《量化金融R语言高级教程》一导读

简介: 本书是我们的前一本书《量化金融R语言初级教程》(Introduction to R for Quantitative Finance)的续作。本书是为那些希望学习R语言来建立更高级量化金融模型的读者而写的。


a1

前 言

量化金融R语言高级教程
本书是我们的前一本书《量化金融R语言初级教程》(Introduction to R for Quantitative Finance)的续作。本书是为那些希望学习R语言来建立更高级量化金融模型的读者而写的。本书包括实证金融(第1~4章)、金融工程(第5~7章)、交易策略优化(第8~10章)和银行管理(第10~13章)等主题。

目 录

第1章 时间序列分析
1.1  多元时间序列分析
1.2  波动率建模
1.3  小结
1.4  参考文献
第2章 因素模型
2.1  套利定价理论
2.2  在R中建模
2.3  小结
2.4  参考文献
第3章 成交量预测
第4章 大数据—高级分析
第5章 FX衍生品
第6章 利率衍生品和模型
第7章 奇异期权
第8章 最优对冲
第9章 基本面分析
第10章 技术分析、神经网络和对数优化组合
第11章 资产和负债管理
第12章 资本充足率
第13章 系统风险

相关文章
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-2
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6月前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
6月前
|
数据采集 人工智能 算法
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
|
6月前
|
机器学习/深度学习 算法 数据挖掘
R语言在金融分析中的应用
【4月更文挑战第25天】R语言在金融分析中扮演关键角色,尤其在风险管理、资产定价、量化交易、市场预测和投资组合优化方面。作为开源的统计计算和图形平台,R语言拥有强大的统计功能、丰富的包支持和交互式环境。在风险管理中,R用于评估和管理风险,如VaR和ES;在资产定价上,它支持经典模型和衍生品定价;在量化交易领域,R提供策略开发和回测工具;市场预测利用R的统计和机器学习功能;而在投资组合优化上,R帮助确定最佳资产配置。随着金融技术发展,R语言的应用将持续增长。
104 2

热门文章

最新文章