《量化金融R语言高级教程》一2.4 参考文献

简介:

本节书摘来异步社区《量化金融R语言高级教程》一书中的第2章,第2.4节,作者: 【匈牙利】Edina Berlinger(艾迪娜•伯林格) , 等 译者: 高蓉 责编: 胡俊英,更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.4 参考文献

  • E.F. Fama, and K.R. French (1996), Multifactor Explanations of asset Pricing Anomalies, Journal of Finance 51, pp. 55—84.
  • Z. Bodie, A. Kane, and A. Marcus (2008), Essentials of Investment, Edition 7,McGraw-Hill Irwin.
  • P. Medvegyev, and J. Száz (2010), A meglepetések jellege a pénzügyi piacokon, Bankárképző, Budapest.
  • P. Wilmott (2007), Paul Wilmott Introduces Quantitative Finance, Edition 2,John Wiley & Sons Ltd, West Sussex.
  • G. Daróczi, M. Puhle, E. Berlinger, P. Csóka, D. Havran, M, Michaletzky,Zs. Tulassay, K. Váradi and A. Vidovics-Dancs (2013), Introduction to R for Quantitative Finance, Packt Publishing, Birmingham-Mumbai.
  • S.A. Ross (1976), Return, Risk and Arbitrage: in: Risk and Return in Finance,Cambridge, Mass, Ballinger.
  • Gy .Walter, E. Berlinger (1999), Faktormodellek azértékpapírpiacokon (Factormodels on securities' markets), Bankszemle, 43(4), pp. 34—43. ISSN 0133—0519.
相关文章
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-2
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6月前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
6月前
|
数据采集 人工智能 算法
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
|
6月前
|
机器学习/深度学习 算法 数据挖掘
R语言在金融分析中的应用
【4月更文挑战第25天】R语言在金融分析中扮演关键角色,尤其在风险管理、资产定价、量化交易、市场预测和投资组合优化方面。作为开源的统计计算和图形平台,R语言拥有强大的统计功能、丰富的包支持和交互式环境。在风险管理中,R用于评估和管理风险,如VaR和ES;在资产定价上,它支持经典模型和衍生品定价;在量化交易领域,R提供策略开发和回测工具;市场预测利用R的统计和机器学习功能;而在投资组合优化上,R帮助确定最佳资产配置。随着金融技术发展,R语言的应用将持续增长。
108 2

热门文章

最新文章