《量化金融R语言高级教程》一2.3 小结

简介:

本节书摘来异步社区《量化金融R语言高级教程》一书中的第2章,第2.3节,作者: 【匈牙利】Edina Berlinger(艾迪娜•伯林格) , 等 译者: 高蓉 责编: 胡俊英,更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.3 小结

本章中,我们看到如何建立并实现多因素模型。通过主成分分析,我们确认需要5个独立因素解释资产定价。但是,这些因素仅有30%的方差解释力,表现出模型解释的不充分性。通过实例,我们用实际市场数据重建了著名的Fama-French模型。在这个模型中,除了市场因素,我们也使用了另两个公司特定因素(SMB和HML)。我们使用内置函数进行主成分分析和因子分析,并讲述了如何使用一般线性模型进行回归分析。

我们发现,这3个因素是显著的。因此我们得出结论,对新近的样本,Fama-French因素具有解释力。我们非常鼓励你能够模仿经典理论,发展并检验新的多因素定价方程式,可能会比经典方程更加出色。

相关文章
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-2
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6月前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
6月前
|
存储 vr&ar
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
|
6月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
6月前
|
数据采集 人工智能 算法
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
R语言ARMA-GARCH模型金融产品价格实证分析黄金价格时间序列
|
6月前
|
机器学习/深度学习 算法 数据挖掘
R语言在金融分析中的应用
【4月更文挑战第25天】R语言在金融分析中扮演关键角色,尤其在风险管理、资产定价、量化交易、市场预测和投资组合优化方面。作为开源的统计计算和图形平台,R语言拥有强大的统计功能、丰富的包支持和交互式环境。在风险管理中,R用于评估和管理风险,如VaR和ES;在资产定价上,它支持经典模型和衍生品定价;在量化交易领域,R提供策略开发和回测工具;市场预测利用R的统计和机器学习功能;而在投资组合优化上,R帮助确定最佳资产配置。随着金融技术发展,R语言的应用将持续增长。
108 2

热门文章

最新文章