在 Kubernetes 上快速测试 Citus 分布式 PostgreSQL 集群(分布式表,共置,引用表,列存储)

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 在 Kubernetes 上快速测试 Citus 分布式 PostgreSQL 集群(分布式表,共置,引用表,列存储)

 准备工作



这里假设,你已经在 k8s 上部署好了基于 Citus 扩展的分布式 PostgreSQL 集群。

查看 Citus 集群(kubectl get po -n citus),1Coordinator(协调器) 节点 +3Worker(工作器) 节点。


NAME                  READY   STATUS    RESTARTS   AGE
citus-coordinator-0   2/2     Running   0          3h55m
citus-worker-0        2/2     Running   0          22m
citus-worker-1        2/2     Running   0          21m
citus-worker-2        2/2     Running   0          21m


进入 coordinator 节点(kubectl -n citus exec -it citus-coordinator-0 -- bash),查看活动的 worker 节点(psql 'host=citus-coordinator user=postgres' -c "SELECT * FROM citus_get_active_worker_nodes();")。



node_name                      | node_port 
-----------------------------------------------------+-----------
 citus-worker-1.citus-worker.citus.svc.cluster.local |      6432
 citus-worker-2.citus-worker.citus.svc.cluster.local |      6432
 citus-worker-0.citus-worker.citus.svc.cluster.local |      6432
(3 rows)


一旦拥有 Citus 集群,就可以开始创建分布式表引用表和使用列存储


 创建分布式表



create_distributed_table 将在本地或工作节点之间透明地切分您的表。

进入命令行工具:psql 'host=citus-coordinator user=postgres'

建表


CREATE TABLE events (
  device_id bigint,
  event_id bigserial,
  event_time timestamptz default now(),
  data jsonb not null,
  PRIMARY KEY (device_id, event_id)
);
-- 将事件表分布在本地或工作节点上的分片上
SELECT create_distributed_table('events', 'device_id');


执行此操作后,对特定设备 ID 的查询将有效地路由到单个工作节点,而跨设备 ID 的查询将在集群中并行化。


插入一些事件


INSERT INTO events (device_id, data)
SELECT s % 100, ('{"measurement":'||random()||'}')::jsonb FROM generate_series(1,1000000) s;
-- INSERT 0 1000000


获取设备 1 的最后 3 个事件,路由到单个节点

命令行开启计时:postgres=# \timing


SELECT * FROM events WHERE device_id = 1 ORDER BY event_time DESC, event_id DESC LIMIT 3;


device_id | event_id |          event_time           |                data                 
-----------+----------+-------------------------------+-------------------------------------
         1 |   999901 | 2022-03-24 02:30:50.205478+00 | {"measurement": 0.8822990134507691}
         1 |   999801 | 2022-03-24 02:30:50.205478+00 | {"measurement": 0.5239176115816448}
         1 |   999701 | 2022-03-24 02:30:50.205478+00 | {"measurement": 0.9900647926398349}
(3 rows)
Time: 4.779 ms


解释跨分片并行化的查询的计划,以下显示了查询其中一个分片的计划以及如何完成跨分片的聚合

执行 sql 语句:


EXPLAIN (VERBOSE ON) SELECT count(*) FROM events;


QUERY PLAN                                                
---------------------------------------------------------------------------------------------------------
 Aggregate  (cost=250.00..250.02 rows=1 width=8)
   Output: COALESCE((pg_catalog.sum(remote_scan.count))::bigint, '0'::bigint)
   ->  Custom Scan (Citus Adaptive)  (cost=0.00..0.00 rows=100000 width=8)
         Output: remote_scan.count
         Task Count: 32
         Tasks Shown: One of 32
         ->  Task
               Query: SELECT count(*) AS count FROM public.events_102008 events WHERE true
               Node: host=citus-worker-0.citus-worker.citus.svc.cluster.local port=6432 dbname=postgres
               ->  Aggregate  (cost=725.00..725.01 rows=1 width=8)
                     Output: count(*)
                     ->  Seq Scan on public.events_102008 events  (cost=0.00..650.00 rows=30000 width=0)
                           Output: device_id, event_id, event_time, data
(13 rows)
Time: 5.427 ms


 使用共置创建分布式表


具有相同分布列的分布式表可以位于同一位置,以实现分布式表之间的高性能分布式连接(join)和外键。默认情况下,分布式表将根据分布列的类型位于同一位置,但您可以使用 create_distributed_table 中的 colocate_with 参数显式定义同一位置。

建表


CREATE TABLE devices (
  device_id bigint primary key,
  device_name text,
  device_type_id int
);
CREATE INDEX ON devices (device_type_id);
-- 将设备表与事件表放在一起
SELECT create_distributed_table('devices', 'device_id', colocate_with := 'events');


插入设备元数据


INSERT INTO devices (device_id, device_name, device_type_id)
SELECT s, 'device-'||s, 55 FROM generate_series(0, 99) s;


可选:确保应用程序只能插入已知设备的事件


ALTER TABLE events ADD CONSTRAINT device_id_fk
FOREIGN KEY (device_id) REFERENCES devices (device_id);


获得跨分片并行的所有类型 55 设备的平均测量值


SELECT avg((data->>'measurement')::double precision)
FROM events JOIN devices USING (device_id)
WHERE device_type_id = 55;


avg         
--------------------
 0.4997412230952178
(1 row)
Time: 122.548 ms


Co-location 还可以帮助您扩展 INSERT..SELECT、存储过程和分布式事务。


  • INSERT..SELECT
  • 存储过程
  • 分布式事务


 创建引用表


当您需要不包含分布列的快速 join 或外键时,您可以使用 create_reference_table 在集群中的所有节点之间复制表。

建表


CREATE TABLE device_types (
  device_type_id int primary key,
  device_type_name text not null unique
);


跨所有节点复制表以在任何列上启用外键和 join


SELECT create_reference_table('device_types');


插入设备类型


INSERT INTO device_types (device_type_id, device_type_name) VALUES (55, 'laptop');


可选:确保应用程序只能插入已知类型的设备


ALTER TABLE devices ADD CONSTRAINT device_type_fk
FOREIGN KEY (device_type_id) REFERENCES device_types (device_type_id);


获取类型名称以笔记本电脑开头的设备的最后 3 个事件,跨分片并行


SELECT device_id, event_time, data->>'measurement' AS value, device_name, device_type_name
FROM events JOIN devices USING (device_id) JOIN device_types USING (device_type_id)
WHERE device_type_name LIKE 'laptop%' ORDER BY event_time DESC LIMIT 3;


device_id |          event_time           |        value        | device_name | device_type_name 
-----------+-------------------------------+---------------------+-------------+------------------
        31 | 2022-03-24 02:30:50.205478+00 | 0.9994211581289107  | device-31   | laptop
        31 | 2022-03-24 02:30:50.205478+00 | 0.13771543211483106 | device-31   | laptop
        88 | 2022-03-24 02:30:50.205478+00 | 0.5585740912470349  | device-88   | laptop
(3 rows)
Time: 96.537 ms


引用表使您能够扩展复杂的数据模型并充分利用关系数据库的功能。


 使用列式存储创建表


要在 PostgreSQL 数据库中使用列式存储,您只需将 USING columnar 添加到 CREATE TABLE 语句中,您的数据将使用列式访问方法自动压缩。


建表


CREATE TABLE events_columnar (
  device_id bigint,
  event_id bigserial,
  event_time timestamptz default now(),
  data jsonb not null
)
USING columnar;


插入一些数据


INSERT INTO events_columnar (device_id, data)
SELECT d, '{"hello":"columnar"}' FROM generate_series(1,10000000) d;


创建一个基于行的表进行比较


CREATE TABLE events_row AS SELECT * FROM events_columnar;


查看表大小


postgres=# \d+
                                                  List of relations
 Schema |             Name             |   Type   |  Owner   | Persistence | Access method |    Size    | Description 
--------+------------------------------+----------+----------+-------------+---------------+------------+-------------
 public | citus_tables                 | view     | postgres | permanent   |               | 0 bytes    | 
 public | device_types                 | table    | postgres | permanent   | heap          | 8192 bytes | 
 public | devices                      | table    | postgres | permanent   | heap          | 8192 bytes | 
 public | events                       | table    | postgres | permanent   | heap          | 8192 bytes | 
 public | events_columnar              | table    | postgres | permanent   | columnar      | 25 MB      | 
 public | events_columnar_event_id_seq | sequence | postgres | permanent   |               | 8192 bytes | 
 public | events_event_id_seq          | sequence | postgres | permanent   |               | 8192 bytes | 
 public | events_row                   | table    | postgres | permanent   | heap          | 806 MB     | 
(8 rows)


注意 events_row(806 MB)events_columnar(25 MB) 的对比。压缩了几十倍,效果非常的惊人,大大节省了存储空间。


您可以单独使用列存储,也可以在分布式表中使用,以结合压缩和分布式查询引擎的优势。


使用列式存储时,您应该只使用 COPYINSERT..SELECT 批量加载数据以实现良好的压缩。柱状表目前不支持更新、删除和外键。但是,您可以使用分区表,其中较新的分区使用基于行的存储,而较旧的分区使用列存储进行压缩。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
37 9
|
7天前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
2月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
229 33
|
2月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
112 19
|
2月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
103 0
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
|
5月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
3月前
|
运维 分布式计算 Kubernetes
ACK One多集群Service帮助大批量应用跨集群无缝迁移
ACK One多集群Service可以帮助您,在无需关注服务间的依赖,和最小化迁移风险的前提下,完成跨集群无缝迁移大批量应用。
|
4月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
5月前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
286 12

热门文章

最新文章

推荐镜像

更多