数据持久化技术(Python)的使用

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 数据持久化技术(Python)的使用
  • 传统数据库连接方式:mysql(PyMySQL)
  • ORM 模型:SQLAlchemy MyBatis、 Hibernate

PyMySQL

安装:

pip install pymysql

简单使用

利用 pymysql.connect 建立数据库连接并执行 SQL 命令(需要提前搭建好数据库):

import pymysql
db = pymysql.connect(
    # mysql 地址
    host='182.92.129.158',
    # 账号和密码
    user='tmp',
    password='ceshiren.com',
    # 数据库
    db='tmp',
    charset='utf8mb4'
)
if __name__ == '__main__':
    with db.cursor() as cursor:
        # 查看数据库中有多少表
        sql = "show tables;"
        # 执行 sql 语句
        cursor.execute(sql)
        # 查看所有数据
        print(cursor.fetchall())
        # 查询 name = aaaaaa 的数据
        sql = "select * from test_case_table where name=%s"
        cursor.execute(sql, ["aaaaaa"])
        print(cursor.fetchall())
(('test_case_table',),)
(('aaaaaa', '新的测试用例', 'test_hello.py', 'def test'),)

ORM

对象关系映射( object-relational mapping) 利用语言特性,操作数据库,比如对 Python 对象的操作,操作内容会映射到数据库里。

SQLALchemy 是 Python 编程语言下的一款 ORM 框架,该框架建立在数据库 API 之上,使用关系对象映射进行数据库操作。

安装

pip3 install SQLAlchemy

安装完成后可创建数据库连接:

engine = create_engine("mysql+pymysql://tmp:ceshiren.com@182.92.129.158/tmp?charset=utf8",echo=True,)

1.echo: 当设置为 True 时会将 ORM 语句转化为 SQL 语句打印,一般 debug 的时候可用。

2.字段解释:

3.mysql+pymysql:连接方式,采用 pymysql 。

4.tmp:ceshiren.com:用户名:密码。

5.182.92.129.158/tmp:数据库地址和数据库名称。

创建数据库

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import declarative_base
engine = create_engine("mysql+pymysql://tmp:ceshiren.com@182.92.129.158/tmp?charset=utf8",
                       echo=True,
                       )
# 其子类将 Python 类和数据库表关联映射起来
Base = declarative_base()
# 继承 Base
class Users(Base):
    __tablename__ = "users"
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True)
    def __init__(self, name):
        self.name = name
if __name__ == '__main__':
    # 生成数据库表,如果有此库会忽略
    Base.metadata.create_all(engine)

declarative_base() 是 SQLALchemy 内部封装的一个方法,可以让其子类将 Python 类和数据库表关联映射起来。

增和查

SQLALchemy 使用 Session 用于创建程序和数据库之间的会话,通过 Session 对象可实现对数据的增删改查。

from sqlalchemy.orm import sessionmaker
# 创建session
Session = sessionmaker(bind=engine)
session = Session()
# 添加新数据
add_user = Users("student1")
# 提交
session.add(add_user)
session.commit()
# 查询
result = session.query(Users).filter_by(name="student1").first()
print(result.id, result.name)

上述代码新增数据后进行查询,结果如下:

1 student1

数据持久化技术就先介绍到这里,大家可以试着做一下练习,

我们后面会讲跨平台API对接,请持续关注哦~更多技术文章


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
24天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
1天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
8天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
36 2
|
22天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
数据可视化 图形学 Python
在圆的外面画一个正方形:Python实现与技术解析
本文介绍了如何使用Python的`matplotlib`库绘制一个圆,并在其外部绘制一个正方形。通过计算正方形的边长和顶点坐标,实现了圆和正方形的精确对齐。代码示例详细展示了绘制过程,适合初学者学习和实践。
44 9
|
1月前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
53 3
|
1月前
|
存储 数据挖掘 数据处理
Python中的计票技术
本文介绍了如何使用 Python 进行计票,包括使用字典、`collections.Counter` 和 `pandas` 等方法。通过多个示例详细展示了每种方法的具体应用,帮助读者掌握计票技巧。
30 1
|
1月前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
37 2
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
32 1