4.2 事务写入 (Transactional Writes)
需要构建事务来写入外部系统,构建的事务对应着 checkpoint,等到 checkpoint 真正完成的时候,才把所有对应的结果写入 sink 系统中。
事务 (Transaction)
应用程序中一系列严密的操作,所有操作必须成功完成,否则在每个操作中所作的所有更改都会被撤销
具有原子性:一个事务中的一系列的操作要么全部成功,要么一个都不做
实现思想:构建的事务对应着 checkpoint,等到 checkpoint 真正完成的时候,才把所有对应的结果写入 sink 系统中
对于事务性写入,具体又有两种实现方式:预写日志(WAL)和两阶段提交(2PC)。DataStream API 提供了 GenericWriteAheadSink 模板类和TwoPhaseCommitSinkFunction 接口,可以方便地实现这两种方式的事务性写入。
4.2.1 预写日志(Write-Ahead-Log,WAL)
把结果数据先当成状态保存,然后在收到 checkpoint 完成的通知的时候,一次性写入 sink 系统
简单易于实现,由于数据提前在状态后端中做了缓存,所以无论什么 sink 系统,都能用这种方式一批搞定
DataStream API 提供了一个模板类:GenericWriteAheadSink,来实现这种事务性 sink
4.2.2 两阶段提交(Two-Phase-Commit,2PC)
对于每个 checkpoint,sink 任务会启动一个事务,并将接下来所有接收的数据添加到事务里
然后将这些数据写入外部的 sink 系统,但不提交它们 ----- 这时只是“预提交”
当它收到 checkpoint 完成的通知时,它才正式提交事务,实现结果的真正写入
这种方式真正实现了 exactly-once ,它需要一个提供事务支持的外部 sink 系统。Flink 提供了 TwoPhaseCommitSinkFunction 接口。
4.2.3 2PC 对外部 sink 系统的要求
外部 sink 系统必须提供事务支持,或者 sink 任务必须能够模拟外部系统上的事务
在 checkpoint 的间隔期间里,必须能够开启一个事务并接受数据写入
在收到 checkpoint 完成的通知之前,事务必须是“等待提交” 的状态。在故障恢复的情况下,这可能需要一些时间。如果这个时候 sink 系统关闭事务 (列如超时了),那么未提交的数据就会丢失
sink 任务必须能够在进程失败后恢复事务
提交事务必须是幂等操作
4.2.4 不同 Source 和 Sink 的一致性
五、Flink+Kafka 端到端状态一致性的保证
我们知道,端到端的状态一致性的实现,需要每一个组件都实现,对于 Flink + Kafka 的数据管道系统(Kafka 进、Kafka 出)而言,各组件怎样保证 exactly-once语义呢?
内部 —— 利用 checkpoint 机制,把状态存盘,发生故障的时候可以恢复,
保证内部的状态一致性
source —— kafka consumer 作为 source,可以将偏移量保存下来,如果后
续任务出现了故障,恢复的时候可以由连接器重置偏移量,重新消费数据,
保证一致性
sink —— kafka producer 作为 sink,采用两阶段提交 sink,需要实现一个
TwoPhaseCommitSinkFunction
内部的 checkpoint 机制我们已经有了了解,那 source 和 sink 具体又是怎样运行的呢?接下来我们逐步做一个分析。
5.1 Exactly-once 两阶段提交
我们知道 Flink 由 JobManager 协调各个 TaskManager 进行 checkpoint 存储,checkpoint 保存在 StateBackend 中,默认 StateBackend 是内存级的,也可以改为文件级的进行持久化保存。
当 checkpoint 启动时,JobManager 会将检查点分界线(barrier)注入数据流;barrier 会在算子间传递下去。
每个算子会对当前的状态做个快照,保存到状态后端。对于 source 任务而言,就会把当前的 offset 作为状态保存起来。下次从 checkpoint 恢复时,source 任务可以重新提交偏移量,从上次保存的位置开始重新消费数据。
每个内部的 transform 任务遇到 barrier 时,都会把状态存到 checkpoint 里。sink 任务首先把数据写入外部 kafka,这些数据都属于预提交的事务(还不能被消费);当遇到 barrier 时,把状态保存到状态后端,并开启新的预提交事务。
当所有算子任务的快照完成,也就是这次的 checkpoint 完成时,JobManager 会向所有任务发通知,确认这次 checkpoint 完成。
当 sink 任务收到确认通知,就会正式提交之前的事务,kafka 中未确认的数据就改为“已确认”,数据就真正可以被消费了。
所以我们看到,执行过程实际上是一个两段式提交,每个算子执行完成,会进行“预提交”,直到执行完 sink 操作,会发起“确认提交”,如果执行失败,预提交会放弃掉。
5.2 两阶段提交步骤总结
具体的两阶段提交步骤总结如下:
第一条数据来了之后,开启一个 kafka 的事务(transaction),正常写入
kafka 分区日志但标记为未提交,这就是“预提交”
jobmanager 触发 checkpoint 操作,barrier 从 source 开始向下传递,遇到
barrier 的算子将状态存入状态后端,并通知 jobmanager
sink 连接器收到 barrier,保存当前状态,存入 checkpoint,通知
jobmanager,并开启下一阶段的事务,用于提交下个检查点的数据
jobmanager 收到所有任务的通知,发出确认信息,表示 checkpoint 完成
sink 任务收到 jobmanager 的确认信息,正式提交这段时间的数据
外部 kafka 关闭事务,提交的数据可以正常消费了。
所以我们也可以看到,如果宕机需要通过 StateBackend 进行恢复,只能恢复所有确认提交的操作,关于后端状态的选择可以看【Flink】(七)状态管理 。