一文读懂MD2
一文读懂MD2
❝MD2是
❞Ranald Rivest
在1989年提出的哈希函数,本文主要介绍一下MD2算法的基本原理,尽管现在MD2已经并不安全,作为一个结构比较简单的哈希函数,学习一下还是十分有必要的。
MD2 计算整体流程
算法流程
下面本文将简单描述一下MD2
算法的基本流程
字节填充(Append Padding Bytes)
这个字节填充的方案和之前写过的MD5
, SHA1
, 不太一样,有兴趣的可以参考一下我写过的有关MD5
或者SHA1
的相关介绍。
MD4
按照如下的规则填充,假设数据长度为m
, 则需要填充16 - (m mod 16)
个字节的数据,填充内容为16 - (m mod 16)
, 下图是当填充一整个分组的时候的示意图:
MD2-Padding
添加校验和(Append Checksum)
校验和按照如下的方式进行计算:
For i = 0 to 15 do: Set C[i] to 0. end /* of loop on i */ Set L to 0. /* Process each 16-word block. */ For i = 0 to N/16-1 do /* Checksum block i. */ For j = 0 to 15 do Set c to M[i*16+j]. Set C[j] to S[c xor L]. Set L to C[j]. end /* of loop on j */ end /* of loop on i */
MD2校验和
初始化MD Buffer(Initialize MD Buffer)
这个初始化比较简单,直接初始化48字节的0数组即可。
处理消息块(Process Message in 16-Byte Blocks)
这同样是算法的核心过程,这里直接贴一下RFC当中的算法了:
For i = 0 to N'/16-1 do /* Copy block i into X. */ For j = 0 to 15 do Set X[16+j] to M[i*16+j]. Set X[32+j] to (X[16+j] xor X[j]). end /* of loop on j */ Set t to 0. /* Do 18 rounds. */ For j = 0 to 17 do /* Round j. */ For k = 0 to 47 do Set t and X[k] to (X[k] xor S[t]). end /* of loop on k */ Set t to (t+j) modulo 256. end /* of loop on j */ end /* of loop on i */
这个过程和计算校验和有点相似,如下图所示:
处理过程
输出
这一步比较简单,直接输出缓冲区(MD Buffer)的内容即为最终的结果。
算法实现
use std::iter::repeat; static S_BOX: [u8; 256] = [ 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01, 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13, 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C, 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA, 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16, 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12, 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49, 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A, 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F, 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21, 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27, 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03, 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1, 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6, 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6, 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1, 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02, 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6, 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F, 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A, 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26, 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09, 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52, 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA, 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A, 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D, 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39, 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4, 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A, 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A, 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14, ]; pub struct MD2 {} impl MD2 { fn padding(message: &[u8]) -> Vec<u8> { let mut result = message.to_vec(); let padding_length = 16 - message.len() % 16; result.extend(repeat(padding_length as u8).take(padding_length)); return result; } fn checksum(message: &[u8]) -> [u8; 16] { let mut checksum = [0u8; 16]; let mut last = 0u8; for chuck in message.chunks(16) { for (m, c) in chuck.iter().zip(checksum.iter_mut()) { *c ^= S_BOX[(*m ^ last) as usize]; last = *c; } } return checksum; } fn compress(state: &[u8], message: &[u8]) -> [u8; 16] { let mut x = [0u8; 48]; for i in 0..16 { x[i] = state[i]; x[i + 16] = message[i] } for (i, byte) in message.iter().enumerate() { x[32 + i] = *byte ^ x[i]; } let mut t = 0u8; for i in 0..18 { for j in 0..x.len() { x[j] ^= S_BOX[t as usize]; t = x[j]; } t = t.wrapping_add(i); } let mut result = [0u8; 16]; for i in 0..16 { result[i] = x[i]; } return result; } fn hash(message: &[u8]) -> String { let mut message = MD2::padding(message); let csum = MD2::checksum(&message); message.extend(csum.to_vec()); let hash = message.chunks(16).fold([0u8; 16], |state, chunk| MD2::compress(&state, chunk)); return hash.iter().fold(String::new(), |a, &b| format!("{}{:02x}", a, b)); } } #[cfg(test)] mod test { use crate::md2::MD2; #[test] fn test() { println!("md2([empty string]) = {}", MD2::hash("".as_bytes())); println!("md2([The quick brown fox jumps over the lazy dog]) = {}", MD2::hash("The quick brown fox jumps over the lazy dog".as_bytes())); } }