【信号去噪】基于柯西近端分裂 (CPS) 算法实现信号去噪附MATLAB源代码

简介: 【信号去噪】基于柯西近端分裂 (CPS) 算法实现信号去噪附MATLAB源代码

1 简介

In this paper, we propose a proximal splitting methodology with a non-convex penalty function based on the heavy-tailed Cauchy distribution. We first suggest a closed-form expression for calculating the proximal operator of the Cauchy prior, which then makes it applicable in generic proximal splitting algorithms. We further derive the condition required for guaranteed convergence to the global minimum in optimisation problems involving the Cauchy based penalty function. Setting the system parameters by satisfying the proposed condition ensures convergence even though the overall cost function is non-convex, when minimisation is performed via a proximal splitting algorithm. The proposed method based on Cauchy regularisation is evaluated by solving generic signal processing examples, i.e. 1D signal denoising in the frequency domain, two image reconstruction tasks including de-blurring and denoising, and error recovery in a multiple-antenna communication system. We experimentally verify the proposed convergence conditions for various cases, and show the effectiveness of the proposed Cauchy based non-convex penalty function over state-of-the-art penalty functions such as $L_1$ and total variation ( $TV$ ) norms.

2 部分代码

%% Deblurring via Cauchy proximal splitting algorithm% y = x + n% y is the 1D noisy signal% x is the clear (noise-free) signal (object of interest)% n is the additive zero-meam Gaussian noise with SNR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Some Important Variables%       ** sizeSignal: Exponent of 2 for the size of the signal in time domain.%%       ** M: The size of the signal in time domain.%%       ** N: The size of the signal in frequency domain.%%       ** SNRdB: Noise SNR value in decibels.%%       ** Niter: Maximum number of FB iterations.%%       ** x: Noise-free signal%%       ** y: Noisy signal%%       ** mu: FB step size%%       ** gamma: Cauchy scale parameter%%       ** x_hat: The reconstructed signal in frequency domain.%%       ** x_Cauchy: The reconstructed signal in frequency domain.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LICENSE%% This program is free software: you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation, either version 3 of the License, or% (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program.  If not, see <https://www.gnu.org/licenses/>.%% Copyright (C) Oktay Karakus,PhD% University of Bristol, UK% o.karakus@bristol.ac.uk% April 2020%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REFERENCE%% [1] O Karakus, P Mayo, and A Achim. "Convergence Guarantees for%     Non-Convex Optimisation with Cauchy-Based Penalties"%       arXiv preprint.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clearvarsclose allclc%% Parameter InitializationsizeSignal = 7;M = 2^sizeSignal;N = 2^(sizeSignal + 2);SNRdB = 3;rmse = @(err) sqrt(mean(abs(err(:)).^2));truncate = @(x, M) x(1:M);AH = @(x) fft(x, N)/sqrt(N);A = @(X) truncate(ifft(X), M) * sqrt(N);Niter = 500;[x,y] = wnoise(3, sizeSignal, SNRdB);x = x';y = y';%% Cauchyx_hat = AH(zeros(size(y))); % regularized resultiter = 1;old_X = x_hat;grad_f_x = @(x) AH(A(x) - y); % gradient operatorxx = ones(size(y));yy = 0*ones(size(y));Lip = norm(grad_f_x(xx) - grad_f_x(yy), 2)/norm(xx - yy, 2); % A general calculation for Lipschitz constant.mu = 1.5/Lip;gamma = 2*sqrt(mu)/2;delta_x = inf;tic;while (delta_x(iter) > 1e-3) && (iter < Niter)    iter = iter + 1;    Z = x_hat - mu*(AH(A(x_hat) - y));    x_hat = CauchyProx(real(Z), gamma, mu);    delta_x(iter) = max(abs( x_hat(:) - old_X(:) )) / max(abs(old_X(:))); % Error calculation    old_X = x_hat;end x_Cauchy = A(x_hat);timeSim = toc;RMSE_noisy = rmse(x - y);RMSE_regularized = rmse(x - x_Cauchy);fprintf('Cauchy proximal splitting (CPS) for 1D denoising\nSolved after %d iterations in %.3f seconds\nNoisy RMSE = %.3f\nReconstructed RMSE = %.3f\n', iter, timeSim, RMSE_noisy, RMSE_regularized)figure;set(gcf, 'Position', [100 100 800 300])subplot('Position', [0.0501, 0.1001, 0.9, 0.85])plot(x, 'b', 'Linewidth', 1.5)hold onplot(y, 'k-.', 'Linewidth', 1)plot(x_Cauchy, 'r--', 'Linewidth', 2)grid onlegend('Noise-free', ['Noisy (SNR = ' num2str(SNRdB) ' dB)'], 'CPS')text(40, 0.9*max(y), ['RMSE_{Noisy} = ' num2str(RMSE_noisy)], 'Color', 'Black')text(40, 0.6*max(y), ['RMSE_{CPS} = ' num2str(RMSE_regularized)], 'Color', 'Red')

3 仿真结果

4 参考文献

[1] Karakus O ,  Mayo P ,  Achim A . Convergence Guarantees for Non-Convex Optimisation with Cauchy-Based Penalties[J].  2020.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
23天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
138 3
|
28天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
17天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
17天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
23天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
23天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
23天前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
|
23天前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
111 0
|
23天前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
28天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
147 14

热门文章

最新文章