Android中mmap原理及应用简析

简介: Android中mmap原理及应用简析

mmap是Linux中常用的系统调用API,用途广泛,Android中也有不少地方用到,比如匿名共享内存,Binder机制等。本文简单记录下Android中mmap调用流程及原理。mmap函数原型如下:


void *mmap(void *start,size_t length,int prot,int flags,int fd,off_t offsize);

几个重要参数


  • 参数start:指向欲映射的内存起始地址,通常设为 NULL,代表让系统自动选定地址,映射成功后返回该地址。
  • 参数length:代表将文件中多大的部分映射到内存。
  • 参数prot:映射区域的保护方式。可以为以下几种方式的组合:


返回值是void *类型,分配成功后,被映射成虚拟内存地址。


mmap属于系统调用,用户控件间接通过swi指令触发软中断,进入内核态(各种环境的切换),进入内核态之后,便可以调用内核函数进行处理。 mmap->mmap64->__mmap2->sys_mmap2-> sys_mmap_pgoff ->do_mmap_pgoff

/Users/personal/source_code/android/platform/bionic/libc/bionic/mmap.cpp:

image.png

/Users/personal/source_code/android/platform/bionic/libc/arch-arm/syscalls/__mmap2.S:

image.png

而 __NR_mmap在系统函数调用表中对应的减值如下:

image.png

通过系统调用,执行swi软中断,进入内核态,最终映射到call.S中的内核函数:sys_mmap2

image.png

sys_mmap2最终通过sys_mmap_pgoff在内核态完成后续逻辑。

image.png

sys_mmap_pgoff通过宏定义实现

/Users/personal/source_code/android/kernel/common/mm/mmap.c:

image.png

进而调用do_mmap_pgoff:

/Users/personal/source_code/android/kernel/common/mm/mmap.c:

image.png

unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
            unsigned long len, unsigned long prot,
            unsigned long flags, unsigned long pgoff,
            unsigned long *populate)
{
    struct mm_struct * mm = current->mm;
    struct inode *inode;
    vm_flags_t vm_flags;
    *populate = 0;
    ...
    <!--获取用户空间有效虚拟地址-->
    addr = get_unmapped_area(file, addr, len, pgoff, flags);
    ...
    inode = file ? file_inode(file) : NULL;
   ...
   <!--分配,映射,更新页表-->
    addr = mmap_region(file, addr, len, vm_flags, pgoff);
    if (!IS_ERR_VALUE(addr) &&
        ((vm_flags & VM_LOCKED) ||
         (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
        *populate = len;
    return addr;
}

get_unmapped_area用于为用户空间找一块内存区域,

unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
        unsigned long pgoff, unsigned long flags)
{
    unsigned long (*get_area)(struct file *, unsigned long,
                  unsigned long, unsigned long, unsigned long);
    ...
    get_area = current->mm->get_unmapped_area;
    if (file && file->f_op && file->f_op->get_unmapped_area)
        get_area = file->f_op->get_unmapped_area;
    addr = get_area(file, addr, len, pgoff, flags);
    ...
    return error ? error : addr;
}

current->mm->get_unmapped_area一般被赋值为arch_get_unmapped_area_topdown,

image.png

unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
            const unsigned long len, const unsigned long pgoff,
            const unsigned long flags)
{
    struct vm_area_struct *vma;
    struct mm_struct *mm = current->mm;
    unsigned long addr = addr0;
    int do_align = 0;
    int aliasing = cache_is_vipt_aliasing();
    struct vm_unmapped_area_info info;
    ... 
    addr = vm_unmapped_area(&info);
   ...
    return addr;
}

先找到合适的虚拟内存(用户空间),几经周转后,调用相应文件或者设备驱动中的mmap函数,完成该设备文件的mmap,至于如何处理处理虚拟空间,要看每个文件的自己的操作了。

image.png

这里有个很关键的结构体


const struct file_operations    *f_op;

它是文件驱动操作的入口,在open的时候,完成file_operations的绑定,open流程跟mmap类似


image.png

image.png

image.png

image.png

先通过get_unused_fd_flags获取个未使用的fd,再通过do_file_open完成file结构体的创建及初始化,最后通过fd_install完成fd与file的绑定。

image.png

重点看下path_openat:

static struct file *path_openat(int dfd, struct filename *pathname,
        struct nameidata *nd, const struct open_flags *op, int flags)
{
    struct file *base = NULL;
    struct file *file;
    struct path path;
    int opened = 0;
    int error;
    file = get_empty_filp();
    if (IS_ERR(file))
        return file;
    file->f_flags = op->open_flag;
    error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
    if (unlikely(error))
        goto out;
    current->total_link_count = 0;
    error = link_path_walk(pathname->name, nd);
    if (unlikely(error))
        goto out;
    error = do_last(nd, &path, file, op, &opened, pathname);
    while (unlikely(error > 0)) { /* trailing symlink */
        struct path link = path;
        void *cookie;
        if (!(nd->flags & LOOKUP_FOLLOW)) {
            path_put_conditional(&path, nd);
            path_put(&nd->path);
            error = -ELOOP;
            break;
        }
        error = may_follow_link(&link, nd);
        if (unlikely(error))
            break;
        nd->flags |= LOOKUP_PARENT;
        nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
        error = follow_link(&link, nd, &cookie);
        if (unlikely(error))
            break;
        error = do_last(nd, &path, file, op, &opened, pathname);
        put_link(nd, &link, cookie);
    }
out:
    if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
        path_put(&nd->root);
    if (base)
        fput(base);
    if (!(opened & FILE_OPENED)) {
        BUG_ON(!error);
        put_filp(file);
    }
    if (unlikely(error)) {
        if (error == -EOPENSTALE) {
            if (flags & LOOKUP_RCU)
                error = -ECHILD;
            else
                error = -ESTALE;
        }
        file = ERR_PTR(error);
    }
    return file;
}

拿Binder设备文件为例子,在注册该设备驱动的时候,对应的file_operations已经注册好了,

image.png

image.png

open的时候,只需要根根inode节点,获取到file_operations既可,并且,在open成功后,要回调file_operations中的open函数

image.png

open后,就可以利用fd找到file,之后利用file中的file_operations *f_op调用相应驱动函数,接着看mmap。


Binder mmap 的作用及原理(一次拷贝)


Binder机制中mmap的最大特点是一次拷贝即可完成进程间通信。Android应用在进程启动之初会创建一个单例的ProcessState对象,其构造函数执行时会同时完成binder mmap,为进程分配一块内存,专门用于Binder通信,如下。

ProcessState::ProcessState(const char *driver)
    : mDriverName(String8(driver))
    , mDriverFD(open_driver(driver))
    ...
 {
    if (mDriverFD >= 0) {
        // mmap the binder, providing a chunk of virtual address space to receive transactions.
        mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
        ...
    }
}

第一个参数是分配地址,为0意味着让系统自动分配,流程跟之前分子类似,先在用户空间找到一块合适的虚拟内存,之后,在内核空间也找到一块合适的虚拟内存,修改两个控件的页表,使得两者映射到同一块物力内存。


Linux的内存分用户空间跟内核空间,同时页表有也分两类,用户空间页表跟内核空间页表,每个进程有一个用户空间页表,但是系统只有一个内核空间页表。而Binder mmap的关键是:也更新用户空间对应的页表的同时也同步映射内核页表,让两个页表都指向同一块地址,这样一来,数据只需要从A进程的用户空间,直接拷贝拷贝到B所对应的内核空间,而B多对应的内核空间在B进程的用户空间也有相应的映射,这样就无需从内核拷贝到用户空间了。

static int binder_mmap(struct file *filp, struct vm_area_struct *vma)
{
    int ret;
    ...
    if ((vma->vm_end - vma->vm_start) > SZ_4M)
        vma->vm_end = vma->vm_start + SZ_4M;
   ...
    // 在内核空间找合适的虚拟内存块
    area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP);
   proc->buffer = area->addr;
   <!--记录用户空间虚拟地址跟内核空间虚拟地址的差值-->
   proc->user_buffer_offset = vma->vm_start - (uintptr_t)proc->buffer;
        ...
    proc->pages = kzalloc(sizeof(proc->pages[0]) * ((vma->vm_end - vma->vm_start) / PAGE_SIZE), GFP_KERNEL);
   ..<!--分配page,并更新用户空间及内核空间对应的页表-->
    ret = binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma);
    ...
    return ret;
}

binder_update_page_range完成了内存分配、页表修改等关键操作:

static int binder_update_page_range(struct binder_proc *proc, int allocate,
            void *start, void *end,
            struct vm_area_struct *vma)
{
...
 <!--一页页分配-->
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
    int ret;
    struct page **page_array_ptr;
    <!--分配一页-->
    page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
    *page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
    ...
    <!-- 修改页表,让物理空间映射到内核空间-->
    ret = map_vm_area(&tmp_area, PAGE_KERNEL, &page_array_ptr);
    ..
     <!--根据之前记录过差值,计算用户空间对应的虚拟地址-->
    user_page_addr =
        (uintptr_t)page_addr + proc->user_buffer_offset;
    <!--修改页表,让物理空间映射到用户空间-->
    ret = vm_insert_page(vma, user_page_addr, page[0]);
}
...
  return -ENOMEM;
}

可以看到,binder一次拷贝的关键是,完成内存的时候,同时完成了内核空间跟用户空间的映射,也就是说,同一份物理内存,既可以在用户空间,用虚拟地址访问,也可以在内核空间用虚拟地址访问。


普通文件mmap原理


普通文件的访问方式有两种:第一种是通过read/write系统调访问,先在用户空间分配一段buffer,然后,进入内核,将内容从磁盘读取到内核缓冲,最后,拷贝到用户进程空间,至少牵扯到两次数据拷贝;同时,多个进程同时访问一个文件,每个进程都有一个副本,存在资源浪费的问题。


另一种是通过mmap来访问文件,mmap()将文件直接映射到用户空间,文件在mmap的时候,内存并未真正分配,只有在第一次读取/写入的时候才会触发,这个时候,会引发缺页中断,在处理缺页中断的时候,完成内存也分配,同时也完成文件数据的拷贝。并且,修改用户空间对应的页表,完成到物理内存到用户空间的映射,这种方式只存在一次数据拷贝,效率更高。同时多进程间通过mmap共享文件数据的时候,仅需要一块物理内存就够了。


共享内存中mmap的使用


共享内存是在普通文件mmap的基础上实现的,其实就是基于tmpfs文件系统的普通mmap,有机会再分析,不再啰嗦。


目录
相关文章
|
1天前
|
Java 编译器 Android开发
构建高效Android应用:探究Kotlin与Java的性能差异
【5月更文挑战第1天】 在移动开发的世界中,性能优化始终是开发者关注的焦点。随着Kotlin的兴起,许多团队和开发者面临着一个选择:是坚持传统的Java语言,还是转向现代化、更加简洁的Kotlin?本文通过深入分析和对比Kotlin与Java在Android应用开发中的性能表现,揭示两者在编译效率、运行速度和内存消耗等方面的差异。我们将探讨如何根据项目需求和团队熟悉度,选择最适合的语言,以确保应用的高性能和流畅体验。
|
1天前
|
缓存 安全 Android开发
构建高效Android应用:采用Kotlin进行内存优化
【5月更文挑战第1天】随着移动设备的普及,用户对应用程序的性能要求越来越高。特别是对于Android开发者来说,理解并优化应用的内存使用是提升性能的关键。本文将探讨使用Kotlin语言在Android开发中实现内存优化的策略和技术。我们将深入分析Kotlin特有的语言特性和工具,以及它们如何帮助开发者减少内存消耗,避免常见的内存泄漏问题,并提高整体应用性能。
|
1天前
|
安全 Android开发 开发者
构建高效Android应用:采用Kotlin与Jetpack的实践指南
【4月更文挑战第30天】 在移动开发领域,随着技术的不断进步,为了提高应用的性能和用户体验,开发者们不断地探索新的工具和框架。对于Android平台而言,Kotlin语言以其简洁性和功能性成为了开发的首选。而Jetpack组件则提供了一套高质量的库、工具和指南,帮助开发者更轻松地构建高质量的应用程序。本文将探讨如何结合Kotlin语言和Jetpack组件来优化Android应用的开发流程,提升应用性能,并保证代码的可维护性和可扩展性。
|
2天前
|
Java 编译器 Android开发
构建高效Android应用:探究Kotlin与Java的性能差异
【4月更文挑战第30天】在Android开发领域,Kotlin作为一种现代化的编程语言,因其简洁性和功能性受到了开发者的广泛欢迎。尽管与传统的Java相比,Kotlin提供了诸多便利,但关于其性能表现的讨论始终未息。本文将深入分析Kotlin和Java在Android平台上的性能差异,通过实际测试数据揭示两种语言在编译效率、运行速度以及内存占用方面的具体表现,并探讨如何利用Kotlin的优势来提升Android应用的整体性能。
|
2天前
|
移动开发 调度 Android开发
构建高效Android应用:Kotlin协程的实践之路
【4月更文挑战第30天】 在移动开发领域,性能优化与流畅的用户体验始终是开发者追求的目标。随着Kotlin语言在Android开发中的普及,其提供的协程特性成为了解决异步编程问题的有力工具。本文将通过深入分析Kotlin协程的原理与实践,展示如何在Android应用中利用协程提升响应速度和处理效率,同时保证代码的简洁性和可维护性。我们将从基本概念出发,逐步深入到协程的高级使用场景,帮助开发者构建更加高效的Android应用。
|
2天前
|
移动开发 Java Android开发
构建高效Android应用:Kotlin协程的实践之路
【4月更文挑战第30天】在移动开发领域,随着用户需求的不断增长和设备性能的持续提升,实现流畅且高效的用户体验已成为开发者的首要任务。针对Android平台,Kotlin协程作为一种新兴的异步编程解决方案,以其轻量级线程管理和简洁的代码逻辑受到广泛关注。本文将深入探讨Kotlin协程的概念、优势以及在实际Android应用中的运用,通过实例演示如何利用协程提升应用性能和响应能力,为开发者提供一条构建更高效Android应用的实践路径。
|
2天前
|
安全 网络安全 Android开发
云端防御策略:融合云服务与网络安全的未来构建高效的Android应用:从内存优化到电池寿命
【4月更文挑战第30天】 随着企业加速向云计算环境转移,数据和服务的云端托管成为常态。本文探讨了在动态且复杂的云服务场景下,如何构建和实施有效的网络安全措施来保障信息资产的安全。我们将分析云计算中存在的安全挑战,并展示通过多层次、多维度的安全框架来提升整体防护能力的方法。重点关注包括数据加密、身份认证、访问控制以及威胁检测与响应等关键技术的实践应用,旨在为读者提供一种结合最新技术进展的网络安全策略视角。 【4月更文挑战第30天】 在竞争激烈的移动市场中,Android应用的性能和资源管理已成为区分优秀与平庸的关键因素。本文深入探讨了提升Android应用效率的多个方面,包括内存优化策略、电池
|
2天前
|
机器学习/深度学习 人工智能 缓存
安卓应用性能优化实践探索深度学习在图像识别中的应用进展
【4月更文挑战第30天】随着智能手机的普及,移动应用已成为用户日常生活的重要组成部分。对于安卓开发者而言,确保应用流畅、高效地运行在多样化的硬件上是一大挑战。本文将探讨针对安卓平台进行应用性能优化的策略和技巧,包括内存管理、多线程处理、UI渲染效率提升以及电池使用优化,旨在帮助开发者构建更加健壮、响应迅速的安卓应用。 【4月更文挑战第30天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域革新的核心动力。本篇文章将深入分析深度学习技术在图像识别任务中的最新应用进展,并探讨其面临的挑战与未来发展趋势。通过梳理卷积神经网络(CNN)的优化策略、转移学习的实践应用以及增强学习与生成对
|
2天前
|
算法 安全 Android开发
深入理解操作系统的内存管理机制构建高效Android应用:Kotlin的协程优势
【4月更文挑战第30天】 在现代计算机系统中,操作系统的内存管理是确保系统高效、稳定运行的关键。本文将探讨操作系统内存管理的核心技术,包括内存分配、虚拟内存、分页和分段等概念,以及它们是如何协同工作以提高内存利用率和系统性能的。通过对这些技术的详细分析,我们可以更好地理解操作系统背后的原理,并评估不同内存管理策略对系统行为的影响。 【4月更文挑战第30天】 在移动开发领域,尤其是针对Android平台,性能优化和流畅的用户体验始终是开发者追求的核心目标。随着Kotlin语言的普及,协程作为其在异步编程领域的杀手锏特性,已经逐渐成为提高应用性能和简化代码结构的重要工具。本文将深入探讨Kotli
|
2天前
|
缓存 监控 Android开发
构建高效Android应用:从内存优化到电池续航
【4月更文挑战第30天】 在移动开发领域,性能优化是一个永不过时的话题。对于Android应用而言,实现流畅的用户体验和延长设备电池寿命是至关重要的。本文将深入探讨Android平台特有的内存管理和电池使用策略,并提出一系列切实可行的优化措施。通过智能管理应用的生命周期、合理利用系统资源和调整后台任务执行策略,开发者可以显著提升应用性能并减少能源消耗。文章最后还将讨论如何利用Android Studio内置工具进行性能分析与监控,确保应用在发布前达到最优状态。