【Kafka】(十四)Kafka 架构深入

简介: 【Kafka】(十四)Kafka 架构深入

文章目录


一、Kafka 工作流程及文件存储机制

二、Kafka 生产者

1、分区策略

2、数据可靠性保证

3、Exactly Once 语义

三、Kafka 消费者

1、消费方式

2、分区分配策略

3、offset 的维护


一、Kafka 工作流程及文件存储机制


20200216162540468.png


Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic的。


topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。


20200216162742897.png


由于生产者生产的消息会不断追加到 log 文件末尾,为防止log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic 名称+分区序号。例如,first 这个topic 有三个分区,则其对应的文件夹为 first-0,first-1,first-2。


20200222192729193.png


index 和 log 文件以当前 segment 的第一条消息的 offset 命名。下图为 index 文件和 log文件的结构示意图。


20200222192813765.png


“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message 的物理偏移地址。


二、Kafka 生产者


1、分区策略


1)分区的原因


(1)方便在集群中扩展,每个 Partition 可以通过调整以适应它所在的机器,而一个 topic

又可以有多个 Partition 组成,因此整个集群就可以适应任意大小的数据了;

(2)可以提高并发,因为可以以 Partition 为单位读写了。


2)分区的原则


我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象。


(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;

(2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;

(3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。


2、数据可靠性保证


为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。


20200225233842833.png


1)副本数据同步策略


20200225234813817.png


Kafka 选择了第二种方案,原因如下:


1.同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。

2.虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。


2)ISR


采用第二种方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?


Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower长时间 未 向 leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该 时 间 阈 值 由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。


3)ack 应答机制


对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。


所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,

选择以下的配置。


acks 参数配置:


acks:


0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;


1:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower同步成功之前 leader 故障,那么将会丢失数据;


-1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才

返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会

造成数据重复。


4)故障处理细节


20200225235417263.png


LEO:指的是每个副本最大的 offset;

HW:指的是消费者能见到的最大的 offset,ISR 队列中最小的 LEO。


(1)follower 故障

follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。


(2)leader 故障

leader 发生故障之后,会从 ISR 中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。


注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。


3、Exactly Once 语义


将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。


At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的,At Least Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。在 0.11 版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。


0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:


At Least Once + 幂等性 = Exactly Once


要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而Broker 端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。


但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。


三、Kafka 消费者


1、消费方式


consumer 采用 pull(拉)模式从 broker 中读取数据。


push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。


pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka 的消费者在消费数据时会传入一个时长参数 timeout,如果当前没有数据可供消费,consumer 会等待一段时间之后再返回,这段时长即为 timeout。


2、分区分配策略


一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定那个 partition 由哪个 consumer 来消费。

Kafka 有两种分配策略,一是 RoundRobin,一是 Range。


3、offset 的维护


由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。


Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中,从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为__consumer_offsets。

目录
相关文章
|
2月前
|
消息中间件 存储 缓存
Kafka【基础知识 01】消息队列介绍+Kafka架构及核心概念(图片来源于网络)
【2月更文挑战第20天】Kafka【基础知识 01】消息队列介绍+Kafka架构及核心概念(图片来源于网络)
112 2
|
1月前
|
消息中间件 监控 大数据
Kafka消息队列架构与应用场景探讨:面试经验与必备知识点解析
【4月更文挑战第9天】本文详尽探讨了Kafka的消息队列架构,包括Broker、Producer、Consumer、Topic和Partition等核心概念,以及消息生产和消费流程。此外,还介绍了Kafka在微服务、实时数据处理、数据管道和数据仓库等场景的应用。针对面试,文章解析了Kafka与传统消息队列的区别、实际项目挑战及解决方案,并展望了Kafka的未来发展趋势。附带Java Producer和Consumer的代码示例,帮助读者巩固技术理解,为面试做好准备。
27 0
|
4月前
|
消息中间件 存储 设计模式
Kafka原理篇:图解kakfa架构原理
Kafka原理篇:图解kakfa架构原理
100 1
|
1月前
|
消息中间件 大数据 Kafka
Kafka与大数据:消息队列在大数据架构中的关键角色
【4月更文挑战第7天】Apache Kafka是高性能的分布式消息队列,常用于大数据架构,作为实时数据管道汇聚各类数据,并确保数据有序传递。它同时也是数据分发枢纽,支持多消费者订阅,简化系统集成。Kafka作为流处理平台的一部分,允许实时数据处理,满足实时业务需求。在数据湖建设中,它是数据入湖的关键,负责数据汇集与整理。此外,Kafka提供弹性伸缩和容错保障,适用于微服务间的通信,并在数据治理与审计中发挥作用。总之,Kafka是现代大数据体系中的重要基础设施,助力企业高效利用数据。
58 1
|
8月前
|
消息中间件 存储 缓存
Kafka为什么是高性能高并发高可用架构
Kafka为什么是高性能高并发高可用架构
250 0
|
4月前
|
消息中间件 Kafka
Kafka - 深入了解Kafka基础架构:Kafka的基本概念
Kafka - 深入了解Kafka基础架构:Kafka的基本概念
29 0
|
5月前
|
消息中间件 数据挖掘 Kafka
Kafka在微服务架构中的应用:实现高效通信与数据流动
微服务架构的兴起带来了分布式系统的复杂性,而Kafka作为一款强大的分布式消息系统,为微服务之间的通信和数据流动提供了理想的解决方案。本文将深入探讨Kafka在微服务架构中的应用,并通过丰富的示例代码,帮助大家更全面地理解和应用Kafka的强大功能。
|
5月前
|
消息中间件 Kafka Apache
Kafka 架构深度解析:生产者(Producer)和消费者(Consumer)
Apache Kafka 作为分布式流处理平台,其架构中的生产者和消费者是核心组件,负责实现高效的消息生产和消费。本文将深入剖析 Kafka 架构中生产者和消费者的工作原理、核心概念以及高级功能。
|
4天前
|
存储 监控 API
构建高效微服务架构:后端开发的现代实践
【5月更文挑战第9天】 在本文中,我们将深入探讨如何在后端开发中构建一个高效的微服务架构。通过分析不同的设计模式和最佳实践,我们将展示如何提升系统的可扩展性、弹性和维护性。我们还将讨论微服务架构在处理复杂业务逻辑和高并发场景下的优势。最后,我们将分享一些实用的工具和技术,以帮助开发者实现这一目标。
|
1天前
|
监控 API 开发者
构建高效微服务架构:后端开发的新范式
【5月更文挑战第12天】 在现代软件开发的浪潮中,微服务架构已经成为了设计复杂系统的首选模式。它通过将大型应用程序拆分成一组小而专注的服务来增强系统的可维护性和可扩展性。本文将探讨微服务架构的关键概念、优势以及如何在后端开发中实现一个高效的微服务系统。我们还将讨论一些常见的挑战和最佳实践,以帮助开发者避免陷入常见的陷阱。
15 6