浅谈大数据背景下物流管理模式创新

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 公路运输作为除铁路运输以外唯一的钢材运输方式,在河钢集团宣钢公司的生产经营中起着十分重要的作用。其运输网密度大、分布广、适应性强,车辆无需中途倒运,可以直接送货到门,能够为客户提供“门到门,户到户”高效,快捷,便利运输服务。作为“物流运输大动脉”的物流公司,担负着宣钢所有钢材的储备外发任务,如何节省装车时间,减少物流业务环节,缩短物流运输周期,是提高物流运输质量的重要保证。因此,特大胆提出运用智能化平台和数字化技术进行物流运输管理,提升物流运输质量预想。

物流运输是指为了满足客户需求,以最低的运输成本,最合适的交通运输工具,通过配送,传递等方式,选择最优路径,将原材料,半成品等由产品产出地到商品需求地的一种传递,管理方式。同时也是供应链过程的一部分,以满足客户需求为目的,以高效和经济的手段组织产品,服务以及相关信息从供应链到消费的运动和存储的计划,执行和控制的过程,为用户提供更多功能,一体化的综合服务。

 

1,车辆管理:将需要使用的车辆类型,属性及司机姓名,联系方式等内容输入到系统,做到了合理筛选,避免了因人工输入带来的诸多不便。同时,数据的同步会增加信息的准确性。

2,仓库货物管理:通过系统进行数据实时更新,准确了解和掌握当日库存以及剩余量情况,方便及时,合理安排下一车次的装车进程。解决了人工盘库和装车滞后带来的问题。减少了无效劳动的同时也大大提高了工作效率。

     3,系统管理:库房管理员根据实物数量及类型及时更新当日库存数据,方便掌握的同时,对所需车辆数量做到心中有数,避免了供不应求或供过于求的现象发生。

4,信息管理:通过系统信息查询,掌握装车物资情况,装车时间,用时消耗以及出厂时间等,做到了信息透明,数据准确,同时,还可以实时掌握车辆出厂情况及运行动态等,为客户按时,保质,保量完成送货任务奠定了基础。

5,自动化管理:通过系统设置,可以分为车辆方面:所需拉运车辆-车号-司机-姓名-联系方式-车辆属性-载重-拉运货物规格-拉运数量-装车时间-出库时间;库房方面:库房号-货物规格-出库量-出库时间。最终达到出库时间的统一,方便跟踪运输车辆运行轨迹。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
204 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
91 2
|
3月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
125 2
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
98 0
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
99 0
|
5月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
289 3
|
2月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。对象如用户、账号、商品等,通过唯一ID记录其相关事件,如操作日志、交易记录等。这种模式下的统计任务包括无序计算(如交易次数、通话时长)和有序计算(如漏斗分析、连续交易检测)。尽管SQL在处理无序计算时表现尚可,但在有序计算中却显得力不从心,主要原因是其对跨行记录运算的支持较弱,且大表JOIN和大结果集GROUP BY的性能较差。相比之下,SPL语言通过强化离散性和有序集合的支持,能够高效地处理这类计算任务,避免了大表JOIN和复杂的GROUP BY操作,从而显著提升了计算效率。
|
3月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
51 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
2月前
|
数据采集 监控 算法
大数据与物流行业:智能配送的实现
【10月更文挑战第31天】在数字化时代,大数据成为物流行业转型升级的关键驱动力。本文探讨大数据如何在物流行业中实现智能配送,包括数据采集与整合、数据分析与挖掘、智能配送规划及实时监控与评估,通过案例分析展示了大数据在优化配送路线和提升物流效率方面的巨大潜力,展望了未来智能配送的高度自动化、实时性和协同化趋势。
|
3月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。这种模式涉及对象(如用户、账户、商品等)及其相关的事件记录,通过这些事件数据可以进行各种统计分析,如漏斗分析、交易次数统计等。然而,SQL 在处理这类任务时表现不佳,特别是在有序计算方面。SPL 作为一种强化离散性和有序集合的语言,能够高效地处理这类计算,避免了大表 JOIN 和大结果集 GROUP BY 的性能瓶颈。通过按 ID 排序和分步计算,SPL 能够显著提高计算效率,并支持实时数据处理。