【大数据面试题】(五)Spark 相关面试题总结

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
注册配置 MSE Nacos/ZooKeeper,182元/月
云原生网关 MSE Higress,422元/月
简介: 【大数据面试题】(五)Spark 相关面试题总结

文章目录


一、spark中的RDD是什么,有哪些特性?

二、概述一下spark中的常用算子区别(map,mapPartitions,foreach,foreachPatition)?

三、谈谈spark中的宽窄依赖?

四、spark中如何划分stage?

五、RDD缓存?

六、driver 的功能是什么?

七、Spark master 使用zookeeper 进行HA 的,有哪些元数据保存在Zookeeper?


一、spark中的RDD是什么,有哪些特性?


答:RDD(Resilient Distributed Dataset)叫做分布式数据集,是spark中最基本的数据抽象,它代表一个不可变,可分区,里面的元素可以并行计算的集合


Dataset:就是一个集合,用于存放数据的


Destributed:分布式,可以并行在集群计算


Resilient:表示弹性的,弹性表示


  1. RDD中的数据可以存储在内存或者磁盘中;


  1. RDD中的分区是可以改变的;


五大特性:


  1. A list of partitions:一个分区列表,RDD中的数据都存储在一个分区列表中


  1. A function for computing each split:作用在每一个分区中的函数


  1. A list of dependencies on other RDDs:一个RDD依赖于其他多个RDD,这个点很重要,RDD的容错机制就是依据这个特性而来的

  4.Optionally,a Partitioner for key-value RDDs(eg:to say that the RDD is hash-partitioned):可选的,针对于kv类型的RDD才有这个特性,作用是决定了数据的来源以及数据处理后的去向


  5.可选项,数据本地性,数据位置最优


二、概述一下spark中的常用算子区别(map,mapPartitions,foreach,foreachPatition)?


答:map:用于遍历RDD,将函数应用于每一个元素,返回新的RDD(transformation算子)


foreach:用于遍历RDD,将函数应用于每一个元素,无返回值(action算子)


mapPatitions:用于遍历操作RDD中的每一个分区,返回生成一个新的RDD(transformation算子)


foreachPatition:用于遍历操作RDD中的每一个分区,无返回值(action算子)


总结:一般使用mapPatitions和foreachPatition算子比map和foreach更加高效,推荐使用


三、谈谈spark中的宽窄依赖?


答:RDD和它的父RDD的关系有两种类型:窄依赖和宽依赖


宽依赖:指的是多个子RDD的Partition会依赖同一个父RDD的Partition,关系是一对多,父RDD的一个分区的数据去到子RDD的不同分区里面,会有shuffle的产生


窄依赖:指的是每一个父RDD的Partition最多被子RDD的一个partition使用,是一对一的,也就是父RDD的一个分区去到了子RDD的一个分区中,这个过程没有shuffle产生


区分的标准就是看父RDD的一个分区的数据的流向,要是流向一个partition的话就是窄依赖,否则就是宽依赖,如图所示:


image.png


四、spark中如何划分stage?


Spark任务会根据RDD之间的依赖关系,形成一个DAG有向无环图,DAG会提交给DAGScheduler,DAGScheduler会把DAG划分相互依赖的多个stage,划分依据就是宽窄依赖,遇到宽依赖就划分stage,每个stage包含一个或多个task,然后将这些task以taskSet的形式提交给TaskScheduler运行,stage是由一组并行的task组成。


stage的task的并行度是由stage的最后一个RDD的分区数来决定的,一般来说,一个partition对应一个task,但最后reduce的时候可以手动改变reduce的个数,也就是改变最后一个RDD的分区数,也就改变了并行度。例如:reduceByKey(+,3)。


优化 :提高stage的并行度:reduceByKey(+,patition的个数) ,join(+,patition的个数)。


DAGScheduler分析:


答:是一个面向stage 的调度器


主要入参有:dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,resultHandler, localProperties.get)


rdd: final RDD;


cleanedFunc: 计算每个分区的函数;


resultHander: 结果侦听器;


主要功能:


  1. 接受用户提交的job;


  1. 将job根据类型划分为不同的stage,记录那些RDD,stage被物化,并在每一个stage内产生一系列的task,并封装成taskset;


  1. 决定每个task的最佳位置,任务在数据所在节点上运行,并结合当前的缓存情况,将taskSet提交给TaskScheduler;


  1. 重新提交shuffle输出丢失的stage给taskScheduler;


注:一个stage内部的错误不是由shuffle输出丢失造成的,DAGScheduler是不管的,由TaskScheduler负责尝试重新提交task执行。


 5.Job的生成:


答:一旦driver程序中出现action,就会生成一个job,比如count等,向DAGScheduler提交job,如果driver程序后面还有action,那么其他action也会对应生成相应的job,所以,driver端有多少action就会提交多少job,这可能就是为什么spark将driver程序称为application而不是job 的原因。每一个job可能会包含一个或者多个stage,最后一个stage生成result,在提交job 的过程中,DAGScheduler会首先从后往前划分stage,划分的标准就是宽依赖,一旦遇到宽依赖就划分,然后先提交没有父阶段的stage们,并在提交过程中,计算该stage的task数目以及类型,并提交具体的task,在这些无父阶段的stage提交完之后,依赖该stage 的stage才会提交。



 6.有向无环图:


答:DAG,有向无环图,简单的来说,就是一个由顶点和有方向性的边构成的图中,从任意一个顶点出发,没有任意一条路径会将其带回到出发点的顶点位置。通俗说就是所有任务的依赖关系。为每个spark job计算具有依赖关系的多个stage任务阶段,通常根据shuffle来划分stage,如reduceByKey,groupByKey等涉及到shuffle的transformation就会产生新的stage ,然后将每个stage划分为具体的一组任务,以TaskSets的形式提交给底层的任务调度模块来执行,其中不同stage之前的RDD为宽依赖关系,TaskScheduler任务调度模块负责具体启动任务,监控和汇报任务运行情况。


五、RDD缓存?


Spark可以使用 persist 和 cache 方法将任意 RDD 缓存到内存、磁盘文件系统中。缓存是容错的,如果一个 RDD 分片丢失,可以通过构建它的 transformation自动重构。被缓存的 RDD 被使用的时,存取速度会被大大加速。一般的executor内存60%做 cache, 剩下的40%做task。


Spark中,RDD类可以使用cache() 和 persist() 方法来缓存。cache()是persist()的特例,将该RDD缓存到内存中。而persist可以指定一个StorageLevel。StorageLevel的列表可以在StorageLevel 伴生单例对象中找到。


Spark的不同StorageLevel ,目的满足内存使用和CPU效率权衡上的不同需求。我们建议通过以下的步骤来进行选择:


  • 如果你的RDDs可以很好的与默认的存储级别(MEMORY_ONLY)契合,就不需要做任何修改了。这已经是CPU使用效率最高的选项,它使得RDDs的操作尽可能的快。


  • 如果不行,试着使用MEMORY_ONLY_SER并且选择一个快速序列化的库使得对象在有比较高的空间使用率的情况下,依然可以较快被访问。


  • 尽可能不要存储到硬盘上,除非计算数据集的函数,计算量特别大,或者它们过滤了大量的数据。否则,重新计算一个分区的速度,和与从硬盘中读取基本差不多快。


  • 如果你想有快速故障恢复能力,使用复制存储级别(例如:用Spark来响应web应用的请求)。所有的存储级别都有通过重新计算丢失数据恢复错误的容错机制,但是复制存储级别可以让你在RDD上持续的运行任务,而不需要等待丢失的分区被重新计算。


  • 如果你想要定义你自己的存储级别(比如复制因子为3而不是2),可以使用StorageLevel 单例对象的apply()方法。


在不会使用cached RDD的时候,及时使用unpersist方法来释放它。


六、driver 的功能是什么?


  • 一个Spark 作业运行时包括一个Driver 进程,也是作业的主进程,具有main 函数,并且有SparkContext 的实例,是程序的入口点;
  • 功能:负责向集群申请资源,向master 注册信息,负责了作业的调度,负责作业的解析、生成Stage 并调度Task 到Executor 上。包括DAGScheduler,TaskScheduler。


七、Spark master 使用zookeeper 进行HA 的,有哪些元数据保存在Zookeeper?


答:spark 通过这个参数spark.deploy.zookeeper.dir 指定master 元数据在zookeeper 中保存的位置,包括Worker,Driver 和Application 以及Executors。standby 节点要从zk 中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。另外,Master 切换需要注意2 点:


  1. 在Master 切换的过程中,所有的已经在运行的程序皆正常运行!因为Spark Application 在运行前就已经通过Cluster Manager 获得了计算资源,所以在运行时Job 本身的调度和处理和Master 是没有任何关系的!
  2. 在Master 的切换过程中唯一的影响是不能提交新的Job:一方面不能够提交新的应用程序给集群,因为只有Active Master 才能接受新的程序的提交请求;另外一方面,已经运行的程序中也不能够因为Action 操作触发新的Job 的提交请求。


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
165 0
|
6月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
274 79
|
10月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
637 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
435 2
|
10月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
387 1
|
10月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
10月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
259 1
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
10月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
10月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!

热门文章

最新文章