【Hive】(十五)Hive 数据倾斜与调优

简介: 【Hive】(十五)Hive 数据倾斜与调优

文章目录


一、什么是数据倾斜?

二、Hadoop 框架的特性

三、主要表现

四、容易数据倾斜情况

五 、产生数据倾斜的原因

六、业务场景

1、空值产生的数据倾斜

(1)场景说明

(2)解决方案

(3)总结

2、不同数据类型关联产生数据倾斜

(1)场景说明

(2)解决方案

3、大小表关联查询产生数据倾斜


一、什么是数据倾斜?


由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。


二、Hadoop 框架的特性


A、不怕数据大,怕数据倾斜


B、Jobs 数比较多的作业运行效率相对比较低,如子查询比较多


C、 sum、count、max、min 等聚集函数,通常不会有数据倾斜问题


三、主要表现


任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大。 单一 reduce 处理的记录数和平均记录数相差太大,通常达到好几倍之多,最长时间远大 于平均时长。


四、容易数据倾斜情况


20200128130546721.png

 

A、group by 不和聚集函数搭配使用的时候


B、count(distinct),在数据量大的情况下,容易数据倾斜,因为 count(distinct)是按 group by 字段分组,按 distinct 字段排序


C、小表关联超大表 join


五 、产生数据倾斜的原因


A:key 分布不均匀


B:业务数据本身的特性


C:建表考虑不周全


D:某些 HQL 语句本身就存在数据倾斜


六、业务场景


1、空值产生的数据倾斜


(1)场景说明


在日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和用户表中的 user_id 相关联,就会碰到数据倾斜的问题。


(2)解决方案


解决方案 1:user_id 为空的不参与关联

select * from log a join user b on a.user_id is not null and a.user_id = b.user_id
union all
select * from log c where c.user_id is null;


解决方案 2:赋予空值新的 key 值

select * from log a left outer join user b on
case when a.user_id is null then concat('hive',rand()) else a.user_id end = b.user_id


(3)总结


方法 2 比方法 1 效率更好,不但 IO 少了,而且作业数也少了,方案 1 中,log 表 读了两次,jobs 肯定是 2,而方案 2 是 1。这个优化适合无效 id(比如-99,’’,null)产 生的数据倾斜,把空值的 key 变成一个字符串加上一个随机数,就能把造成数据倾斜的 数据分到不同的 reduce 上解决数据倾斜的问题。


改变之处:使本身为 null 的所有记录不会拥挤在同一个 reduceTask 了,会由于有替代的 随机字符串值,而分散到了多个 reduceTask 中了,由于 null 值关联不上,处理后并不影响最终结果。


2、不同数据类型关联产生数据倾斜


(1)场景说明


用户表中 user_id 字段为 int,log 表中 user_id 为既有 string 也有 int 的类型, 当按照两个表的 user_id 进行 join 操作的时候,默认的 hash 操作会按照 int 类型的 id 进 行分配,这样就会导致所有的 string 类型的 id 就被分到同一个 reducer 当中。


(2)解决方案


把数字类型 id 转换成 string 类型的 id

select * from user a left outer join log b on b.user_id = cast(a.user_id as string)


3、大小表关联查询产生数据倾斜


注意:使用map join解决小表关联大表造成的数据倾斜问题。这个方法使用的频率很高。


map join 概念:将其中做连接的小表(全量数据)分发到所有 MapTask 端进行 Join,从而避免了 ReduceTask,前提要求是内存足以装下该全量数据。


20200128155940497.png


以大表 a 和小表 b 为例,所有的 maptask 节点都装载小表 b 的所有数据,然后大表 a 的 一个数据块数据比如说是 a1 去跟 b 全量数据做链接,就省去了 reduce 做汇总的过程。 所以相对来说,在内存允许的条件下使用 map join 比直接使用 MapReduce 效率还高些, 当然这只限于做 join 查询的时候。


在 hive 中,直接提供了能够在 HQL 语句指定该次查询使用 map join,map join 的用法是 在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为map join(早期的 Hive 版本的优化器是不能自动优化 map join 的)。其中 tablelist 可以是一个 表,或以逗号连接的表的列表。tablelist 中的表将会读入内存,通常应该是将小表写在 这里。


MapJoin 具体用法:

select /* +mapjoin(a) */ a.id aid, name, age from a join b on a.id = b.id;
select /* +mapjoin(movies) */ a.title, b.rating from movies a join ratings b on a.movieid =
b.movieid;


在 hive0.11 版本以后会自动开启 map join 优化,由两个参数控制:

set hive.auto.convert.join=true; //设置 MapJoin 优化自动开启
set hive.mapjoin.smalltable.filesize=25000000 //设置小表不超过多大时开启 mapjoin 优化


如果是大大表关联呢?那就大事化小,小事化了。把大表切分成小表,然后分别 map join。


那么如果小表不大不小,那该如何处理呢???


使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到 map join 会出现 bug 或异常,这时就需要特别的处理


举一例:日志表和用户表做链接

select * from log a left outer join users b on a.user_id = b.user_id;


users 表有 600w+的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。


改进方案:

select /*+mapjoin(x)*/* from log a
left outer join (
 select /*+mapjoin(c)*/ d.*
 from ( select distinct user_id from log ) c join users d on c.user_id = d.user_id
) x
on a.user_id = x.user_id;


目录
相关文章
|
6月前
|
SQL 大数据 HIVE
Hive 任务调优实践总结
Hive 任务调优实践总结
59 0
|
2月前
|
SQL 数据处理 HIVE
HIVE的数据倾斜调优
hive数据倾斜主要是由shuffle引起的,而引起shuffle的又主要有四种情况,分别为: 1.group by 2.join 3.count(distinct) 4.开窗函数
60 8
|
6月前
|
SQL 缓存 分布式计算
手把手教你解决 Hive 的数据倾斜
数据倾斜是 Hive 中影响任务执行效率的现象,表现为某些任务处理的数据量或耗时远超其他任务。根本原因是 Shuffle 后 Key 分布不均,导致部分 Reduce 负载过高。常见场景包括空值聚合、不可拆分大文件、数值膨胀、不同数据类型 Join、Count(distinct) 计算以及表 Join 操作。解决方法包括过滤空值、转换数据类型、调整聚合策略、使用 MapJoin 等。通过合理优化,如设置 `hive.groupby.skewindata` 和 `hive.map.aggr` 参数,可以有效缓解数据倾斜问题。
676 2
|
6月前
|
SQL 分布式计算 算法
【Hive】数据倾斜怎么解决?
【4月更文挑战第16天】【Hive】数据倾斜怎么解决?
|
6月前
|
SQL 分布式计算 Java
bigdata-24-Hive调优
bigdata-24-Hive调优
36 0
|
6月前
|
SQL HIVE
Hive数据倾斜处理集合
Hive数据倾斜处理集合
137 0
|
6月前
|
SQL 数据采集 分布式计算
Hadoop和Hive中的数据倾斜问题及其解决方案
Hadoop和Hive中的数据倾斜问题及其解决方案
108 0
|
6月前
|
SQL HIVE
Hive group by 数据倾斜问题处理
Hive group by 数据倾斜问题处理
93 0
|
SQL 分布式计算 负载均衡
Hive数据倾斜的原因以及常用解决方案
Hive数据倾斜的原因以及常用解决方案
|
SQL 存储 JSON
Hive学习---7、企业级调优(二)
Hive学习---7、企业级调优(二)

热门文章

最新文章