一文带你了解K8S 容器编排(下)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 一文带你了解K8S 容器编排(下)[更多技术文章](https://qrcode.ceba.ceshiren.com/link?name=article&project_id=qrcode&from=CSDN&timestamp=1654851150&author=YL)批处理任务编排初学者容易误以为容器的任务只在于部署行为--将软件在容器中部署以提供持续的服务。但其实容器也同样大量的被应用于批处理程序的运行上。比如测试行为是典型的批处理任务范畴, 它不提供持续稳定的服务, 它只是一段特定的程序,而一但这段测试程序结束后就应该销毁一切,包括执行环境和所占用的资源,容器对比于传统的虚

一文带你了解K8S 容器编排(下)

批处理任务编排
初学者容易误以为容器的任务只在于部署行为--将软件在容器中部署以提供持续的服务。但其实容器也同样大量的被应用于批处理程序的运行上。比如测试行为是典型的批处理任务范畴, 它不提供持续稳定的服务, 它只是一段特定的程序,而一但这段测试程序结束后就应该销毁一切,包括执行环境和所占用的资源,容器对比于传统的虚拟机的优势也在于除了容器更加的轻量级外, 容器的创建和销毁都很方便,通过 K8S 的能力可以很方便的在需要时创建,结束时销毁回收资源以达到更好的资源利用率(就如上篇文章中介绍的 Jenkins 与 K8S 打通后的运作模式)。而现在准备的测试案例会更加特殊, 它需要重复运行 N 次,因为本次执行的是稳定性测试(也有人叫它浸泡测试或者长期高压测试),这种测试类型的特殊之处就在于它的目的是验证被测系统在长期的高压下是否仍能够提供稳定的服务。所以它的测试方式是长期的(1 天,1 周甚至更长时间)不间断的运行自动化测试。而自动化测试的数量是有限的,它不可能持续的运行那么长时间,所以才需要重复运行。在不改造测试框架的前提下 K8S 能通过什么样的方式来帮助完成这个测试需求。首先看一段 K8S 提交任务的配置文件。

yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: stable-test
spec:
  template:
    spec:
      containers:
        - name: stable
          image: registry.gaofei.com/stable_test
          imagePullPolicy: Always
          volumeMounts:
            - name: stableconfig
              mountPath: '/home/work/configs'
              readOnly: false
      restartPolicy: Never
      volumes:
        - name: 'stableconfig'
          configMap:
            name: stableconfig


  backoffLimit: 4
  parallelism: 1
  completions: 1000

上面定义的是向 K8S 提交一个 job 类型的也即是批处理程序请求的配置文件, 将这个配置文件保存为 yaml 文件后就可以通过 kubectl 命令行将任务提交到 K8S 集群中运行了, job 会帮助创建相应的 POD 来完成任务。虽然我已经对这段配置做了一定程度的删减,但仍然有不少的字段类型容易让新手眼花缭乱。不过本次案例只需关注几个重点的地方,第一个是在文件中的 template 字段, 它代表了 POD 的模板, job 通过此模板来动态的创建 POD,它定义了本次执行测试的运行环境, 也就是测试是在 POD 中的容器中执行的。K8S 会根据用户填写的内容来启动 POD。第二个需要注意的地方是配置中最下面的 3 个字段:

  • backoffLimit:可容忍的失败次数。稳定性测试是要长期执行的,而任何长期执行的任务都无法保证在运行过程中 100% 的不出问题,有些时候网络卡顿或者公司内的一些基础设施的临时中断都可能造成测试的失败。所以 K8S 会在任务失败时尝试进行重试(当整个节点出现异常时,K8S 可以将容器调度到其他节点上重试执行,拥有更好的容错能力),而这个字段可以理解为重试的次数
  • parallelism:并行的数量。如果你的批处理任务需要并发能力,那么 K8S 会按照这个字段的数字同时启动多个容器来并发的执行。由于大部分的测试并发能力来源于测试框架而不是外部软件, 所以本次测试在这里填写为 1 就可以。
  • completions:任务成功执行 N 次后结束任务。即便是像稳定性测试这种需要长期运行的测试类型,它也有结束测试的时候。所以把这个参数设定为 1000 代表当测试重复运行了 1000 次后就结束本次的批处理任务。

注意:每次测试运行结束后,K8S 会销毁当前的容器,并启动一个一模一样的新容器来执行新的任务。也就是在的案例里如果不出意外的话,前后会启动 1000 个容器来完成本次的稳定性测试。通过这样一个案例的讲解可以体会一下相比于原生的 Docker 容器,K8S 带来了多少额外的能力。在 K8S 中容器只不过是程序的运行时环境而已,除了程序能运行起来,K8S 更关注的是程序怎样更好的运行。通过上面针对配置文件最后 3 个字段的讲解可以看出来 K8S 在尝试帮助用户解决更复杂的程序运行问题。在本案例中如果不使用 K8S,用户需要编写自己的模块来控制测试用例的重复执行,并发,容错和重试机制,也就是说用户需要自己编写代码来对测试用例进行"编排"。在传统的容器场景中,很多人都会把容器当做一个小型的虚拟机来使用--只要程序能在容器里跑起来就可以了。这种模式并不具备"编排"的思维能力,真实的企业场景下要求的不仅仅是把程序跑起来就可以了,还关心容器调度到什么节点,什么时候触发和结束任务,当任务出现异常时要如何处理,容器和容器之前如何配合以便完成更大的任务等等。这便是 K8S 提供的"容器编排"了。希望读者可以用心体会"容器编排"这 4 个字的含义。

接下来再看一下,如果希望任务能够定时触发该怎么办呢?K8S 中同样提供了 CronJob 类型的任务,可以看到在 schedule 字段中可以填写 cron 表达式来定时启动容器完成的批处理任务。

yaml
apiVersion: batch/v1beta1
kind: CronJob
metadata:
  name: k8scleaner
spec:
  schedule: '0 * */1 * *'
  jobTemplate:
    spec:
      template:
        spec:
          containers:
            - name: k8scleaner
              image: reg.gaofei.com/qa/k8s-cleaner:v2
              imagePullPolicy: Always
          restartPolicy: Never

实际上,目前看到的编排能力仍然是 K8S 的冰山一角,K8S 目前已经成为了分布式计算平台,支持很多大数据和机器学习的计算框架比如 Spark 和 Flink。下面是将 Spark 任务调度到 K8S 中执行的 Demo。

bash
./bin/spark-submit \
  --deploy-mode cluster \
  --class org.apache.spark.examples.SparkPi \
  --master k8s://https://172.27.130.144:6443 \
  --kubernetes-namespace spark-cluster \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
  --conf spark.executor.instances=5 \
  --conf spark.app.name=spark-pi \
  --conf spark.kubernetes.driver.docker.image=kubespark/spark-driver:v2.2.0-kubernetes-0.5.0 \
  --conf spark.kubernetes.executor.docker.image=kubespark/spark-executor:v2.2.0-kubernetes-0.5.0 \
local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.5.0.jar

熟悉大数据领域的人都知道 Hadoop 是分布式计算领域中最流行的调度平台。提交的 Spark 任务都会被调度到 Hadoop 集群中进行调度,运行。但是 K8S 也同样具备这样的能力,通过下载支持 K8S 的 Spark 安装包就可以使用 spark-submit 命令将任务提交到 K8S 上以容器的形态执行,在参数中可以指定使用多少个 executor,每个 executor 申请多少资源等等。这便是 K8S 的魅力,如果你深入了解 K8S 会发现更多有趣又好用的功能。

总结
实际上除了上面讲的能力外,K8S 还包含了非常多的容器编排能力,尤其对于在线服务的编排能力上尤为强大, 但这部分内容留待后续讲解。最后附上一个最简单的 K8S 流程图帮助大家理解。毕竟 K8S 还是一个集群管理软件,上述说明的所有案例在提交给 K8S 后, K8S 都会按照自己的调度策略将 POD 调度到一个合适的节点上执行。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
362 181
|
8天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
|
10天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
|
12天前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
18天前
|
弹性计算 人工智能 资源调度
DeepSeek大解读系列公开课上新!阿里云专家主讲云上智能算力、Kubernetes容器服务、DeepSeek私有化部署
智猩猩「DeepSeek大解读」系列公开课第三期即将开讲,聚焦阿里云弹性计算助力大模型训练与部署。三位专家将分别讲解智能算力支撑、Kubernetes容器服务在AI场景的应用实践、以及DeepSeek一键部署和多渠道应用集成,分享云计算如何赋能大模型发展。欲观看直播,可关注【智猩猩GenAI视频号】预约。 (239字符)
|
2月前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
11天前
|
监控 Cloud Native Java
基于阿里云容器服务(ACK)的微服务架构设计与实践
本文介绍如何利用阿里云容器服务Kubernetes版(ACK)构建高可用、可扩展的微服务架构。通过电商平台案例,展示基于Java(Spring Boot)、Docker、Nacos等技术的开发、容器化、部署流程,涵盖服务注册、API网关、监控日志及性能优化实践,帮助企业实现云原生转型。
|
2月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
2月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
301 11
|
3月前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
304 19

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多