一文带你了解K8S 容器编排(下)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 一文带你了解K8S 容器编排(下)[更多技术文章](https://qrcode.ceba.ceshiren.com/link?name=article&project_id=qrcode&from=CSDN&timestamp=1654851150&author=YL)批处理任务编排初学者容易误以为容器的任务只在于部署行为--将软件在容器中部署以提供持续的服务。但其实容器也同样大量的被应用于批处理程序的运行上。比如测试行为是典型的批处理任务范畴, 它不提供持续稳定的服务, 它只是一段特定的程序,而一但这段测试程序结束后就应该销毁一切,包括执行环境和所占用的资源,容器对比于传统的虚

一文带你了解K8S 容器编排(下)

批处理任务编排
初学者容易误以为容器的任务只在于部署行为--将软件在容器中部署以提供持续的服务。但其实容器也同样大量的被应用于批处理程序的运行上。比如测试行为是典型的批处理任务范畴, 它不提供持续稳定的服务, 它只是一段特定的程序,而一但这段测试程序结束后就应该销毁一切,包括执行环境和所占用的资源,容器对比于传统的虚拟机的优势也在于除了容器更加的轻量级外, 容器的创建和销毁都很方便,通过 K8S 的能力可以很方便的在需要时创建,结束时销毁回收资源以达到更好的资源利用率(就如上篇文章中介绍的 Jenkins 与 K8S 打通后的运作模式)。而现在准备的测试案例会更加特殊, 它需要重复运行 N 次,因为本次执行的是稳定性测试(也有人叫它浸泡测试或者长期高压测试),这种测试类型的特殊之处就在于它的目的是验证被测系统在长期的高压下是否仍能够提供稳定的服务。所以它的测试方式是长期的(1 天,1 周甚至更长时间)不间断的运行自动化测试。而自动化测试的数量是有限的,它不可能持续的运行那么长时间,所以才需要重复运行。在不改造测试框架的前提下 K8S 能通过什么样的方式来帮助完成这个测试需求。首先看一段 K8S 提交任务的配置文件。

yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: stable-test
spec:
  template:
    spec:
      containers:
        - name: stable
          image: registry.gaofei.com/stable_test
          imagePullPolicy: Always
          volumeMounts:
            - name: stableconfig
              mountPath: '/home/work/configs'
              readOnly: false
      restartPolicy: Never
      volumes:
        - name: 'stableconfig'
          configMap:
            name: stableconfig


  backoffLimit: 4
  parallelism: 1
  completions: 1000

上面定义的是向 K8S 提交一个 job 类型的也即是批处理程序请求的配置文件, 将这个配置文件保存为 yaml 文件后就可以通过 kubectl 命令行将任务提交到 K8S 集群中运行了, job 会帮助创建相应的 POD 来完成任务。虽然我已经对这段配置做了一定程度的删减,但仍然有不少的字段类型容易让新手眼花缭乱。不过本次案例只需关注几个重点的地方,第一个是在文件中的 template 字段, 它代表了 POD 的模板, job 通过此模板来动态的创建 POD,它定义了本次执行测试的运行环境, 也就是测试是在 POD 中的容器中执行的。K8S 会根据用户填写的内容来启动 POD。第二个需要注意的地方是配置中最下面的 3 个字段:

  • backoffLimit:可容忍的失败次数。稳定性测试是要长期执行的,而任何长期执行的任务都无法保证在运行过程中 100% 的不出问题,有些时候网络卡顿或者公司内的一些基础设施的临时中断都可能造成测试的失败。所以 K8S 会在任务失败时尝试进行重试(当整个节点出现异常时,K8S 可以将容器调度到其他节点上重试执行,拥有更好的容错能力),而这个字段可以理解为重试的次数
  • parallelism:并行的数量。如果你的批处理任务需要并发能力,那么 K8S 会按照这个字段的数字同时启动多个容器来并发的执行。由于大部分的测试并发能力来源于测试框架而不是外部软件, 所以本次测试在这里填写为 1 就可以。
  • completions:任务成功执行 N 次后结束任务。即便是像稳定性测试这种需要长期运行的测试类型,它也有结束测试的时候。所以把这个参数设定为 1000 代表当测试重复运行了 1000 次后就结束本次的批处理任务。

注意:每次测试运行结束后,K8S 会销毁当前的容器,并启动一个一模一样的新容器来执行新的任务。也就是在的案例里如果不出意外的话,前后会启动 1000 个容器来完成本次的稳定性测试。通过这样一个案例的讲解可以体会一下相比于原生的 Docker 容器,K8S 带来了多少额外的能力。在 K8S 中容器只不过是程序的运行时环境而已,除了程序能运行起来,K8S 更关注的是程序怎样更好的运行。通过上面针对配置文件最后 3 个字段的讲解可以看出来 K8S 在尝试帮助用户解决更复杂的程序运行问题。在本案例中如果不使用 K8S,用户需要编写自己的模块来控制测试用例的重复执行,并发,容错和重试机制,也就是说用户需要自己编写代码来对测试用例进行"编排"。在传统的容器场景中,很多人都会把容器当做一个小型的虚拟机来使用--只要程序能在容器里跑起来就可以了。这种模式并不具备"编排"的思维能力,真实的企业场景下要求的不仅仅是把程序跑起来就可以了,还关心容器调度到什么节点,什么时候触发和结束任务,当任务出现异常时要如何处理,容器和容器之前如何配合以便完成更大的任务等等。这便是 K8S 提供的"容器编排"了。希望读者可以用心体会"容器编排"这 4 个字的含义。

接下来再看一下,如果希望任务能够定时触发该怎么办呢?K8S 中同样提供了 CronJob 类型的任务,可以看到在 schedule 字段中可以填写 cron 表达式来定时启动容器完成的批处理任务。

yaml
apiVersion: batch/v1beta1
kind: CronJob
metadata:
  name: k8scleaner
spec:
  schedule: '0 * */1 * *'
  jobTemplate:
    spec:
      template:
        spec:
          containers:
            - name: k8scleaner
              image: reg.gaofei.com/qa/k8s-cleaner:v2
              imagePullPolicy: Always
          restartPolicy: Never

实际上,目前看到的编排能力仍然是 K8S 的冰山一角,K8S 目前已经成为了分布式计算平台,支持很多大数据和机器学习的计算框架比如 Spark 和 Flink。下面是将 Spark 任务调度到 K8S 中执行的 Demo。

bash
./bin/spark-submit \
  --deploy-mode cluster \
  --class org.apache.spark.examples.SparkPi \
  --master k8s://https://172.27.130.144:6443 \
  --kubernetes-namespace spark-cluster \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
  --conf spark.executor.instances=5 \
  --conf spark.app.name=spark-pi \
  --conf spark.kubernetes.driver.docker.image=kubespark/spark-driver:v2.2.0-kubernetes-0.5.0 \
  --conf spark.kubernetes.executor.docker.image=kubespark/spark-executor:v2.2.0-kubernetes-0.5.0 \
local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.5.0.jar

熟悉大数据领域的人都知道 Hadoop 是分布式计算领域中最流行的调度平台。提交的 Spark 任务都会被调度到 Hadoop 集群中进行调度,运行。但是 K8S 也同样具备这样的能力,通过下载支持 K8S 的 Spark 安装包就可以使用 spark-submit 命令将任务提交到 K8S 上以容器的形态执行,在参数中可以指定使用多少个 executor,每个 executor 申请多少资源等等。这便是 K8S 的魅力,如果你深入了解 K8S 会发现更多有趣又好用的功能。

总结
实际上除了上面讲的能力外,K8S 还包含了非常多的容器编排能力,尤其对于在线服务的编排能力上尤为强大, 但这部分内容留待后续讲解。最后附上一个最简单的 K8S 流程图帮助大家理解。毕竟 K8S 还是一个集群管理软件,上述说明的所有案例在提交给 K8S 后, K8S 都会按照自己的调度策略将 POD 调度到一个合适的节点上执行。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
NoSQL Redis Docker
使用Docker Compose工具进行容器编排的教程
以上就是使用Docker Compose进行容器编排的基础操作。这能帮你更有效地在本地或者在服务器上部署和管理多容器应用。
274 11
|
5月前
|
Kubernetes 调度 异构计算
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
|
6月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
564 33
|
5月前
|
数据采集 消息中间件 Kubernetes
容器化爬虫部署:基于K8s的任务调度与自动扩缩容设计
随着业务复杂度提升,传统定时任务和手工扩缩容难以满足高并发与实时性需求。本文对比两种基于 Kubernetes 的爬虫调度与扩缩容方案:CronJob+HPA 和 KEDA。从调度灵活性、扩缩容粒度、实现难度等维度分析,并提供 YAML+Python 示例。方案 A(CronJob+HPA)适合固定定时任务,配置简单;方案 B(KEDA)支持事件驱动,适合高并发与异步触发场景。根据实际需求可混合使用,优化资源利用与效率。
166 4
|
6月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
|
6月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
136 0
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
|
7月前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
112 1
|
7月前
|
监控 Cloud Native Java
基于阿里云容器服务(ACK)的微服务架构设计与实践
本文介绍如何利用阿里云容器服务Kubernetes版(ACK)构建高可用、可扩展的微服务架构。通过电商平台案例,展示基于Java(Spring Boot)、Docker、Nacos等技术的开发、容器化、部署流程,涵盖服务注册、API网关、监控日志及性能优化实践,帮助企业实现云原生转型。
|
2月前
|
存储 监控 测试技术
如何将现有的应用程序迁移到Docker容器中?
如何将现有的应用程序迁移到Docker容器中?
202 57
|
2月前
|
存储 监控 Java
如何对迁移到Docker容器中的应用进行性能优化?
如何对迁移到Docker容器中的应用进行性能优化?
209 58

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多