源码基于open-jdk 11
关联文档:有哪些并发队列?及ConcurrentLinkedQueue 源码分析
有界阻塞队列,使用单向链表实现,通过ReentrantLock实现线程安全,阻塞通过Condition实现,出队和入队各一把锁,不存在互相竞争 ,一种经典的生产和消费模式场景
内部类
Node
节点对象
static class Node<E> {
//值
E item;
/**
* 表示有效的后续节点
* null 表示最后一个节点
*/
Node<E> next;
Node(E x) { item = x; }
}
Itr
迭代器
private class Itr implements Iterator<E> {
private Node<E> next; //保存下一个节点
private E nextItem; // 保存下一个节点的item值
private Node<E> lastRet; //最近返回的项目节点
private Node<E> ancestor; //remove()中用于断开连接
Itr() {
//获取写锁和取锁,takeLock 和 putLock
fullyLock();
try {
//从头节点开始,如果头节点的下一个节点存在
//为什么不直接用head呢?因为head最开始是指向一个哨兵节点,item=next=null
if ((next = head.next) != null)
//就将下一个节点的item值保存
nextItem = next.item;
} finally {
//释放写锁和取锁
fullyUnlock();
}
}
//通过next判断是否有下一个节点
public boolean hasNext() {
return next != null;
}
//获取下一个节点
public E next() {
Node<E> p;
if ((p = next) == null)
throw new NoSuchElementException();
//p = next != null,将节点保存在lastRet中
lastRet = p;
E x = nextItem;
//获取写锁和取锁
fullyLock();
try {
E e = null;
//获取有效的节点,直到节点的item值不为null
for (p = p.next; p != null && (e = p.item) == null; )
//获取下一个节点
p = succ(p);
next = p;
nextItem = e;
} finally {
//释放锁
fullyUnlock();
}
return x;
}
//循环对队列中的元素应用指定操作
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
Node<E> p;
if ((p = next) == null) return;
lastRet = p;
next = null;
final int batchSize = 64;
Object[] es = null;
int n, len = 1;
do {
//获取写锁和读锁
fullyLock();
try {
//这是时候进行初始化,获取数组长度,创建数组
if (es == null) {
p = p.next;
for (Node<E> q = p; q != null; q = succ(q))
if (q.item != null && ++len == batchSize)
break;
es = new Object[len];
es[0] = nextItem;
nextItem = null;
n = 1;
} else
n = 0;
//开始循环赋值
for (; p != null && n < len; p = succ(p))
if ((es[n] = p.item) != null) {
lastRet = p;
n++;
}
} finally {
//释放锁
fullyUnlock();
}
//循环执行指定操作
for (int i = 0; i < n; i++) {
@SuppressWarnings("unchecked") E e = (E) es[i];
action.accept(e);
}
} while (n > 0 && p != null);
}
public void remove() {
Node<E> p = lastRet;
if (p == null)
throw new IllegalStateException();
lastRet = null;
fullyLock();
try {
if (p.item != null) {
//第一次的时候从头部开始
if (ancestor == null)
ancestor = head;
//查找当前节点p的上一个节点,findPred通过循环比较的方式
ancestor = findPred(p, ancestor);
//断开连接
unlink(p, ancestor);
}
} finally {
//释放锁
fullyUnlock();
}
}
}
LBQSpliterator
可拆分迭代器
private final class LBQSpliterator implements Spliterator<E> {
static final int MAX_BATCH = 1 << 25; //处理数组最大长度
Node<E> current; // 当前节点,初始化前为null
int batch; // 拆分处理的大小
boolean exhausted; // true表示没有更多的节点
long est = size(); // 预估大小,size()获取的大小,并不准确
LBQSpliterator() {}
public long estimateSize() { return est; }
//分割队列
public Spliterator<E> trySplit() {
Node<E> h;
//下面的表达式true,表示还有元素
if (!exhausted &&
((h = current) != null || (h = head.next) != null)
&& h.next != null) {
//获取批量处理的最小值,每次执行trySplit,batch都+1
int n = batch = Math.min(batch + 1, MAX_BATCH);
Object[] a = new Object[n];
int i = 0;
Node<E> p = current;
//获取读锁和写锁
fullyLock();
try {
if (p != null || (p = head.next) != null)
//循环赋值到数组a,直到n个元素
for (; p != null && i < n; p = succ(p))
if ((a[i] = p.item) != null)
i++;
} finally {
fullyUnlock();
}
//表示没有元素
if ((current = p) == null) {
est = 0L;
exhausted = true;
}
else if ((est -= i) < 0L)
//迭代器大小-已拆分的长度 < 0,将est赋值为0,防止发生负数
est = 0L;
if (i > 0)
//创建Spliterator,指定迭代器的特性
return Spliterators.spliterator
(a, 0, i, (Spliterator.ORDERED |
Spliterator.NONNULL |
Spliterator.CONCURRENT));
}
return null;
}
//获取有效节点,并执行指定函数
public boolean tryAdvance(Consumer<? super E> action) {
Objects.requireNonNull(action);
//有元素才继续执行
if (!exhausted) {
E e = null;
//获取写锁和读锁
fullyLock();
try {
Node<E> p;
//当前节点p不为null执行,如果为null获取头节点下一个节点,直到获取不为null的节点
if ((p = current) != null || (p = head.next) != null)
do {
e = p.item;
p = succ(p);
} while (e == null && p != null);//获取一个节点值不为null的节点
//这种情况说明,已经没有可获取的节点了
if ((current = p) == null)
exhausted = true;
} finally {
//释放锁
fullyUnlock();
}
if (e != null) {
//应用函数
action.accept(e);
return true;
}
}
return false;
}
//循环执行指定函数
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
if (!exhausted) {
exhausted = true;
Node<E> p = current;
current = null;
//执行循环的方法
forEachFrom(action, p);
}
}
public int characteristics() {
return (Spliterator.ORDERED |
Spliterator.NONNULL |
Spliterator.CONCURRENT);
}
}
属性
/**队列大小,最大为Integer.MAX_VALUE */
private final int capacity;
/**队列当前节点数量*/
private final AtomicInteger count = new AtomicInteger();
/**
* 头部节点
* 不变性: head.item == null
*/
transient Node<E> head;
/**
* 尾部节点
* 不变变性: last.next == null
*/
private transient Node<E> last;
/**take,poll等要获取的锁*/
private final ReentrantLock takeLock = new ReentrantLock();
/**当队列为空时,出队操作的线程会阻塞放入该队列中等待*/
private final Condition notEmpty = takeLock.newCondition();
/**put,offer等要获取的锁*/
private final ReentrantLock putLock = new ReentrantLock();
/**当队列满时,入队操作的线程会放入该队列中等待*/
private final Condition notFull = putLock.newCondition();
构造函数
//无参构造函数,长度默认为最大长度
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
//提供容量参数
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
//构造一个哨兵节点
last = head = new Node<E>(null);
}
//从给定的集合中创建队列
public LinkedBlockingQueue(Collection<? extends E> c) {
//首先创建一个默认队列
this(Integer.MAX_VALUE);
//获取写锁
final ReentrantLock putLock = this.putLock;
putLock.lock(); //虽然不会发生竞争,但保证可见性是必要的
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity)
throw new IllegalStateException("Queue full");
//入队,将元素加入队列末尾
enqueue(new Node<E>(e));
++n;
}
//设置节点数量
count.set(n);
} finally {
//释放写锁
putLock.unlock();
}
}
size、remainingCapacity
//获取队列长度
public int size() {
return count.get();
}
//队列剩余容量
public int remainingCapacity() {
return capacity - count.get();
}
put
在尾部插入指定元素
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
final int c;
final Node<E> node = new Node<E>(e);
//获取写锁对象
final ReentrantLock putLock = this.putLock;
//获取队列当前数量
final AtomicInteger count = this.count;
//加锁
putLock.lockInterruptibly();
try {
//如果队列数量 已经达到队列的最大容量,则将该线程放入等待队列
while (count.get() == capacity) {
notFull.await();
}
//队列未满,插入队列
enqueue(node);
//队列数量+1,返回原来的队列数量
c = count.getAndIncrement();
if (c + 1 < capacity)
//说明队列未满,唤醒原来阻塞等待插入的线程
notFull.signal();
} finally {
//释放写锁
putLock.unlock();
}
//c == 0 说明第一次插入
if (c == 0)
//唤醒原来阻塞等待出队的线程
signalNotEmpty();
}
offer
在队列的尾部插入元素,该方法提供超时版本,非一直阻塞
//插队元素,超时版本
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
//插入元素不能为null
if (e == null) throw new NullPointerException();
//将时间转换为纳秒
long nanos = unit.toNanos(timeout);
final int c;
//写锁
final ReentrantLock putLock = this.putLock;
//队列数量
final AtomicInteger count = this.count;
//加锁,可以被中断
putLock.lockInterruptibly();
try {
//如果队列满了
while (count.get() == capacity) {
if (nanos <= 0L)
return false;
//将该线程阻塞等待指定时间
nanos = notFull.awaitNanos(nanos);
}
//入队
enqueue(new Node<E>(e));
c = count.getAndIncrement();
//表示没满,唤醒原来入队阻塞等待的线程
if (c + 1 < capacity)
notFull.signal();
} finally {
//释放锁
putLock.unlock();
}
if (c == 0)
//至少有一个元素,队列不为空,唤醒原来出队阻塞的线程
signalNotEmpty();
return true;
}
//入队,不带超时
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
//队列满了,不等待,直接返回false
if (count.get() == capacity)
return false;
final int c;
final Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
//再次检查是否已满
if (count.get() == capacity)
return false;
//入队
enqueue(node);
c = count.getAndIncrement();
//为true说明队列未满,还可以继续插入
if (c + 1 < capacity)
//唤醒原来阻塞等待的入队线程
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}
take
取元素,阻塞版本,直到有元素为止
public E take() throws InterruptedException {
final E x;
final int c;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
//没有元素,将线程放入出队列表中
while (count.get() == 0) {
notEmpty.await();
}
//出队
x = dequeue();
//队列数量减一,返回原队列数量
c = count.getAndDecrement();
//为true 说明队列还有元素,唤醒之前阻塞的出队线程
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
//为true说明之前队列是满的,现在已经至少有一个空闲位置了
if (c == capacity)
//唤醒之前阻塞的入队线程
signalNotFull();
return x;
}
poll、peek
pool 弹出元素,不阻塞线程,或者阻塞有超时时间
peek 只获取队列的头部元素,不阻塞线程
//弹出元素的超时版本
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
final E x;
final int c;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
//可以被中断
takeLock.lockInterruptibly();
try {
//为true说明队列是空的
while (count.get() == 0) {
if (nanos <= 0L)
return null;
//阻塞等待nanos,直到超时
nanos = notEmpty.awaitNanos(nanos);
}
//出队
x = dequeue();
//队列数量减一,返回原来的数量
c = count.getAndDecrement();
//为true说明队列还有元素
if (c > 1)
//唤醒原来阻塞出队的线程
notEmpty.signal();
} finally {
takeLock.unlock();
}
//为true,说明现在已经有空闲的位置
if (c == capacity)
//唤醒原来阻塞的入队线程
signalNotFull();
return x;
}
//弹出元素
public E poll() {
final AtomicInteger count = this.count;
//队列为空,直接返回null
if (count.get() == 0)
return null;
final E x;
final int c;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
//再次检查队列是否为空
if (count.get() == 0)
return null;
//出队
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
//获取头部元素
public E peek() {
final AtomicInteger count = this.count;
//队列是否为空
if (count.get() == 0)
return null;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
//队列不为空,返回头部元素,head.next,因为还有一个item=null的哨兵节点,比如poll形成的
return (count.get() > 0) ? head.next.item : null;
} finally {
takeLock.unlock();
}
}
enqueue
//链接到末尾节点
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
dequeue
//出队,head元素的item始终等于null
private E dequeue() {
Node<E> h = head; //①
Node<E> first = h.next; //②
//变为自引用,等GC回收
h.next = h; //③
head = first; //④
E x = first.item; //⑤
first.item = null; //⑥
return x;
}
remove
//删除指定元素
public boolean remove(Object o) {
if (o == null) return false;
//写锁,读锁都加锁
fullyLock();
try {
for (Node<E> pred = head, p = pred.next;
p != null;
pred = p, p = p.next) {
//通过equlas比较元素是否相同
if (o.equals(p.item)) {
//断开连接
unlink(p, pred);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
contains
//循环判断判断队列是否包含指定元素
public boolean contains(Object o) {
if (o == null) return false;
fullyLock();
try {
for (Node<E> p = head.next; p != null; p = p.next)
if (o.equals(p.item))
return true;
return false;
} finally {
fullyUnlock();
}
}
toArray
将队列输出为数组
public Object[] toArray() {
fullyLock();
try {
int size = count.get();
Object[] a = new Object[size];
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next)
a[k++] = p.item;
return a;
} finally {
fullyUnlock();
}
}
//将队列输出到指定类型的数组
public <T> T[] toArray(T[] a) {
fullyLock();
try {
int size = count.get();
//如果给定的数组长度小于当前队列的长度,需要扩容
//这里的做法是,通过反射生成一个新的数组
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), size);
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next)
a[k++] = (T)p.item;
if (a.length > k)
a[k] = null;
return a;
} finally {
fullyUnlock();
}
}
clear
将队列中的元素清除
public void clear() {
fullyLock();
try {
for (Node<E> p, h = head; (p = h.next) != null; h = p) {
h.next = h;
p.item = null;
}
head = last;
//为true说明之前队列是满的,有可能已经有入队线程阻塞,需要唤醒
if (count.getAndSet(0) == capacity)
notFull.signal();
} finally {
fullyUnlock();
}
}
toString
输出字符串,这里使用了Helpers类,来输出字符串,与Java8不同。
Helpers类用于并发包输出字符串,该类只在输出数组的时候获取锁,而不是在toString中获取锁
public String toString() {
//
return Helpers.collectionToString(this);
}
drainTo
从队列获取指定数量的元素并发送到指定集合,删除队列中原有元素
public int drainTo(Collection<? super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
public int drainTo(Collection<? super E> c, int maxElements) {
Objects.requireNonNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
boolean signalNotFull = false;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
//防止超过范围
int n = Math.min(maxElements, count.get());
// count.get provides visibility to first n Nodes
Node<E> h = head;
int i = 0;
try {
while (i < n) {
Node<E> p = h.next;
c.add(p.item);
//将p节点转换为哨兵节点
p.item = null;
//将h节点置为自引用,等待GC回收
h.next = h;
//将p节点做为头节点,继续下次循环
h = p;
++i;
}
return n;
} finally {
// Restore invariants even if c.add() threw
if (i > 0) {
// assert h.item == null;
head = h;
//如果之前队列是满的,并且已经发送了一部分元素,那么需要唤醒之前阻塞的入队线程
signalNotFull = (count.getAndAdd(-i) == capacity);
}
}
} finally {
takeLock.unlock();
if (signalNotFull)
//唤醒阻塞的入队线程
signalNotFull();
}
}
succ
获取下一个节点
Node<E> succ(Node<E> p) {
//先比较p.next节点是否指向自己p,如果true,则从头节点开始
//如果false返回p.next
//这种写法是不是很巧妙,能够少定义变量,代码也变简洁
if (p == (p = p.next))
p = head.next;
return p;
}
iterator
获取迭代器
public Iterator<E> iterator() {
return new Itr();
}
spliterator
获取可拆分迭代器
public Spliterator<E> spliterator() {
return new LBQSpliterator();
}
forEach
循环执行指定函数
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
forEachFrom(action, null);
}
forEachFrom
void forEachFrom(Consumer<? super E> action, Node<E> p) {
// Extract batches of elements while holding the lock; then
// run the action on the elements while not
final int batchSize = 64; // max number of elements per batch
Object[] es = null; // container for batch of elements
int n, len = 0;
do {
fullyLock();
try {
if (es == null) {
if (p == null) p = head.next;
//先获取所需数组的长度,并创建数组
for (Node<E> q = p; q != null; q = succ(q))
if (q.item != null && ++len == batchSize)
break;
es = new Object[len];
}
//将队列节点的值赋值给数组
for (n = 0; p != null && n < len; p = succ(p))
if ((es[n] = p.item) != null)
n++;
} finally {
//释放锁
fullyUnlock();
}
//给每个元素执行指定函数
for (int i = 0; i < n; i++) {
@SuppressWarnings("unchecked") E e = (E) es[i];
action.accept(e);
}
} while (n > 0 && p != null); //这里有必要用循环吗?
}
removeIf
根据提供的过滤函数,从队列中移除元素
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
return bulkRemove(filter);
}
removeAll
从队列中移除包含在指定集合中的元素
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> c.contains(e));
}
retainAll
从队列中移除不包含在指定集合中的元素,也就是队列中只包含集合中有的元素
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> !c.contains(e));
}
fullyLock、fullyUnlock
/**
* 先获取写锁,在获取读锁
*/
void fullyLock() {
putLock.lock();
takeLock.lock();
}
/**
* 以加锁反方向,释放锁,先释放读锁,再释放写锁
*/
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
findPred
查找当前节点的上一个节点
Node<E> findPred(Node<E> p, Node<E> ancestor) {
//如果ancestor为空,从头节点开始
if (ancestor.item == null)
ancestor = head;
//直到找到与当前节点p相同,返回上一个节点
for (Node<E> q; (q = ancestor.next) != p; )
ancestor = q;
return ancestor;
}
signalNotEmpty
//唤醒原来阻塞等待出队的线程,该方法在put/offer中调用
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
signalNotFull
//唤醒原来阻塞等待入队的线程
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
bulkRemove
根据指定的过滤函数元素
private boolean bulkRemove(Predicate<? super E> filter) {
boolean removed = false;
Node<E> p = null, ancestor = head;
Node<E>[] nodes = null;
int n, len = 0;
do {
// 1. 加锁,并创建长度为64的节点数组
fullyLock();
try {
if (nodes == null) { // first batch; initialize
p = head.next;
for (Node<E> q = p; q != null; q = succ(q))
if (q.item != null && ++len == 64)
break;
nodes = (Node<E>[]) new Node<?>[len];
}
//赋值节点到数组
for (n = 0; p != null && n < len; p = succ(p))
nodes[n++] = p;
} finally {
fullyUnlock();
}
// 2. 在不加锁的情况下,执行过滤函数
long deathRow = 0L; // "bitset" of size 64
for (int i = 0; i < n; i++) {
final E e;
if ((e = nodes[i].item) != null && filter.test(e))
deathRow |= 1L << i;
}
// 3. 加锁,移除元素
if (deathRow != 0) {
fullyLock();
try {
for (int i = 0; i < n; i++) {
final Node<E> q;
if ((deathRow & (1L << i)) != 0L
&& (q = nodes[i]).item != null) {
ancestor = findPred(q, ancestor);
unlink(q, ancestor);
removed = true;
}
nodes[i] = null; // help GC
}
} finally {
fullyUnlock();
}
}
} while (n > 0 && p != null);
return removed;
}
writeObject、readObject
writeObject 将队列元素输出到指定的输出流
readObject 从指定的输入流中读取插入队列
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
fullyLock();
try {
// Write out any hidden stuff, plus capacity
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = head.next; p != null; p = p.next)
s.writeObject(p.item);
// Use trailing null as sentinel
s.writeObject(null);
} finally {
fullyUnlock();
}
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
count.set(0);
last = head = new Node<E>(null);
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
add(item);
}
}
unlink
断开连接
//p为当前节点,pred为上一个节点
void unlink(Node<E> p, Node<E> pred) {
p.item = null;
// 将当前节点p的下一个节点赋值给上一个节点pred的next上
pred.next = p.next;
//如果当前节点为最后一个节点
if (last == p)
//将上一个节点赋值给last,因为当前节点将被删除
last = pred;
//count获取数量,并减一
//判断之前是否是满的,因为删除了一个后,有空闲,唤醒原来在notFull阻塞的线程
if (count.getAndDecrement() == capacity)
notFull.signal();
}
默认线程池阻塞队列为什么用LinkedBlockingQueue
不管是Executors提供的几种线程池,还是Spring提供的线程池,你会发现阻塞队列用的都是LinkedBlockingQueue,而不是用的ArrayBlockingQueue。源码基于Java8
LinkedBlockingQueue
使用单链表实现,提供3种构造函数
- LinkedBlockingQueue() 无参构造函数,链表长度为Integer.MAX_VALUE
- LinkedBlockingQueue(int capacity) 指定capacity长度
- LinkedBlockingQueue(Collection<? extends E> c) 不指定长度,即默认长度为Integer.MAX_VALUE,提供初始化元素
链表节点由Node对象组成,每个Node有item变量用于存储元素,next变量指向下一个节点
执行put的时候,将元素放到链表尾部节点;take的时候从头部取元素
两种操作分别有一个锁putLock, takeLock,互不影响,可以同时进行
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
//put
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
//...
}
//take
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
//...
}
ArrayBlockingQueue
使用数组实现,3种构造函数
- ArrayBlockingQueue(int capacity) 指定长度
- ArrayBlockingQueue(int capacity, boolean fair) 指定长度,及指定是否使用FIFO顺序进出队列
- ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) 指定长度,进行队列顺序,初始元素
从构造函数看出,ArrayBlockingQueue必须指定初始化长度,如果线程池使用该队列,指定长度大了浪费内存,长度小队列并发性不高,在数组满的时候,put操作只能阻塞等待,或者返回false
ArrayBlockingQueue 只定义了一个Lock,put和take使用同一锁,不能同时进行
/** Main lock guarding all access */
final ReentrantLock lock;
总结
- LinkedBlockingQueue 无须指定长度,放入和取出元素使用不同的锁,互不影响,效率高,通用性强
- ArrayBlockingQueue 必须指定长度,大了浪费内存,小了性能不高,使用同一把锁,效率低