Python数据分析:pandas玩转Excel(一)

简介: Python数据分析:pandas玩转Excel(一)

1 pandas简介


1.Pandas是什么?


Pandas是一个强大的分析结构化数据的工具集;


它的使用基础是Numpy(提供高性能的矩阵运算);


用于数据挖掘和数据分析,同时也提供数据清洗功能。

2.DataFrame


DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。


pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。


class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)


image.png


3.Series


它是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。


4.pandas 网址


官网:https://pandas.pydata.org/


中文网:https://www.pypandas.cn/


2 导入


image.png


还需要执行以下导入才能开始:


import pandas as pd
import numpy as np


3 使用

# 使用Pandas
>>> import pandas as pd
>>> df = pd.DataFrame() 
>>> print(df)
# 输出结果
Empty DataFrame
Columns: []
Index: []

4 读取、写入

import pandas as pd
df = pd.read_excel("D:/项目/资料/People.xlsx")     # 把文件读到内存中形成DataFrame
print(df.shape)     # 读取文件行数和列数
print(df.columns)   # 读取列名
print(df.head(3))   # 打印前3行
print(df.tail(3))   # 打印后3行
df = pd.DataFrame({"ID":[1,2,3],"Name":["jack","小明","小红"]})
df = df.set_index("ID")     # 把ID那一列当索引,并产生新的DataFrame
df.to_excel("D:/项目/我爱你.xlsx")   # 写入文件
print("Done!")
目录
相关文章
|
4月前
|
SQL 分布式计算 数据挖掘
从Excel到高级工具:数据分析进阶指南
从Excel到高级工具:数据分析进阶指南
203 54
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
364 0
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
186 2
|
9月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
6月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
813 2
|
7月前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
92 3
|
6月前
|
SQL 数据挖掘 大数据
Excel 后,我们需要怎样的数据分析软件
在现代商业中,数据分析至关重要,但传统BI工具和编程语言如Python、SQL等各有局限。Excel虽交互性强,但面对复杂计算和大数据时力不从心。esProc Desktop作为后Excel时代的数据分析神器,采用SPL语言,具备强大的表格计算能力和天然的大数据支持,可显著降低复杂计算难度。其强交互性、简短代码和内嵌Excel插件功能,让业务人员轻松完成多步骤交互式计算,是理想的数据分析工具。现提供免费使用及丰富学习资源。
|
7月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
8月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
194 2
|
10月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库

推荐镜像

更多