Java实现任务调度FIFO队列策略,LinkedBlockingDeque使用(附代码) | 实用代码架构

简介: Java实现任务调度FIFO队列策略,LinkedBlockingDeque使用(附代码) | 实用代码架构

前言

在工作中,很多高并发的场景中,我们会用到队列来实现大量的任务请求。当任务需要某些特殊资源的时候,我们还需要合理的分配资源,让队列中的任务高效且有序完成任务。熟悉分布式的话,应该了解yarn的任务调度算法。本文主要用java实现一个FIFO(先进先出调度器),这也是常见的一种调度方式。


FIFO任务调度器架构

主要实现的逻辑可以归纳为:


1、任务队列主要是单队列,所有任务按照顺序进入队列后,也会按照顺序执行。

2、如果任务无法获得资源,则将任务塞回队列原位置。


示例代码

Maven依赖如下:


 

<dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
                <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.5.2</version>
        </dependency>

具体的原理就不细说了,通过代码我们看看FIFO任务调度策略是什么玩的吧。下面的代码也可以作为参考。我们会使用到一个双向阻塞队列LinkedBlockingDeque。后面的代码说明会提到。

package ai.guiji.csdn.dispatch;
import cn.hutool.core.thread.ThreadUtil;
import lombok.Builder;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.springframework.scheduling.concurrent.CustomizableThreadFactory;
import java.util.Random;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.IntStream;
/**
 * @Program: csdn @ClassName: FIFODemo @Author: 剑客阿良_ALiang @Date: 2021-12-24 21:21 @Description:
 * fifo队列 @Version: V1.0
 */
@Slf4j
public class FIFODemo {
  private static final LinkedBlockingDeque<Task> TASK_QUEUE = new LinkedBlockingDeque<>();
  private static final ConcurrentHashMap<Integer, LinkedBlockingQueue<Resource>> RESOURCE_MAP =
      new ConcurrentHashMap<>();
  private static final ExecutorService TASK_POOL =
      new ThreadPoolExecutor(
          8,
          16,
          0L,
          TimeUnit.MILLISECONDS,
          new LinkedBlockingQueue<>(),
          new CustomizableThreadFactory("TASK-THREAD-"),
          new ThreadPoolExecutor.AbortPolicy());
  private static final ScheduledExecutorService ENGINE_POOL =
      Executors.newSingleThreadScheduledExecutor(new CustomizableThreadFactory("ENGINE-"));
  private static final AtomicInteger CODE_BUILDER = new AtomicInteger(0);
  @Data
  @Builder
  private static class Resource {
    private Integer rId;
    private Type type;
  }
  @Data
  @Builder
  private static class Task implements Runnable {
    private Integer tId;
    private Runnable work;
    private Type type;
    private Resource resource;
    @Override
    public void run() {
      log.info("[{}]任务,使用资源编号:[{}]", tId, resource.getRId());
      try {
        work.run();
      } catch (Exception exception) {
        exception.printStackTrace();
      } finally {
        log.info("[{}]任务结束,回归资源", tId);
        returnResource(resource);
      }
    }
  }
  private enum Type {
    /** 资源类型 */
    A("A资源", 1),
    B("B资源", 2),
    C("C资源", 3);
    private final String desc;
    private final Integer code;
    Type(String desc, Integer code) {
      this.desc = desc;
      this.code = code;
    }
    public String getDesc() {
      return desc;
    }
    public Integer getCode() {
      return code;
    }
  }
  public static void initResource() {
    Random random = new Random();
    int aCount = random.nextInt(10) + 1;
    int bCount = random.nextInt(10) + 1;
    int cCount = random.nextInt(10) + 1;
    RESOURCE_MAP.put(Type.A.getCode(), new LinkedBlockingQueue<>());
    RESOURCE_MAP.put(Type.B.getCode(), new LinkedBlockingQueue<>());
    RESOURCE_MAP.put(Type.C.getCode(), new LinkedBlockingQueue<>());
    IntStream.rangeClosed(1, aCount)
        .forEach(
            a ->
                RESOURCE_MAP
                    .get(Type.A.getCode())
                    .add(Resource.builder().rId(a).type(Type.A).build()));
    IntStream.rangeClosed(1, bCount)
        .forEach(
            a ->
                RESOURCE_MAP
                    .get(Type.B.getCode())
                    .add(Resource.builder().rId(a).type(Type.B).build()));
    IntStream.rangeClosed(1, cCount)
        .forEach(
            a ->
                RESOURCE_MAP
                    .get(Type.C.getCode())
                    .add(Resource.builder().rId(a).type(Type.C).build()));
    log.info("初始化资源A数量:{},资源B数量:{},资源C数量:{}", aCount, bCount, cCount);
  }
  public static Resource extractResource(Type type) {
    return RESOURCE_MAP.get(type.getCode()).poll();
  }
  public static void returnResource(Resource resource) {
    log.info("开始归还资源,rId:{},资源类型:{}", resource.getRId(), resource.getType().getDesc());
    RESOURCE_MAP.get(resource.getType().code).add(resource);
    log.info("归还资源完成,rId:{},资源类型:{}", resource.getRId(), resource.getType().getDesc());
  }
  public static void enginDo() {
    ENGINE_POOL.scheduleAtFixedRate(
        () -> {
          Task task = TASK_QUEUE.poll();
          if (task == null) {
            log.info("任务队列为空,无需要执行的任务");
          } else {
            Resource resource = extractResource(task.getType());
            if (resource == null) {
              log.info("[{}]任务无法获取[{}],返回队列", task.getTId(), task.getType().getDesc());
              TASK_QUEUE.addFirst(task);
            } else {
              task.setResource(resource);
              TASK_POOL.submit(task);
            }
          }
        },
        0,
        1,
        TimeUnit.SECONDS);
  }
  public static void addTask(Runnable runnable, Type type) {
    Integer tId = CODE_BUILDER.incrementAndGet();
    Task task = Task.builder().tId(tId).type(type).work(runnable).build();
    log.info("提交任务[{}]到任务队列", tId);
    TASK_QUEUE.add(task);
  }
  public static void main(String[] args) {
    initResource();
    enginDo();
    Random random = new Random();
    ThreadUtil.sleep(5000);
    IntStream.range(0, 10)
        .forEach(
            a -> addTask(() -> ThreadUtil.sleep(random.nextInt(10) + 1, TimeUnit.SECONDS), Type.A));
    IntStream.range(0, 10)
        .forEach(
            a -> addTask(() -> ThreadUtil.sleep(random.nextInt(10) + 1, TimeUnit.SECONDS), Type.B));
    IntStream.range(0, 10)
        .forEach(
            a -> addTask(() -> ThreadUtil.sleep(random.nextInt(10) + 1, TimeUnit.SECONDS), Type.C));
  }
}


代码说明:


1、首先我们构造了任务队列,使用的是LinkedBlockingDeque,使用双向队列的原因是如果任务无法获取资源,还需要塞到队首,保证任务的有序性。

2、使用ConcurrentHashMap作为资源映射表,为了保证资源队列使用的均衡性,一旦使用完成的资源会塞到对应资源的队尾处。

3、其中实现了添加任务、提取资源、回归资源几个方法。

4、initResource方法可以初始化资源队列,这里面只是简单的随机了几个资源到A、B、C三种资源,塞入各类别队列。

5、任务私有类有自己的任务标识以及执行完后调用回归资源方法。

6、main方法中会分别提交需要3中资源的10个任务,看看调度情况。


执行结果


image.png

image.png

image.png


我们可以通过结果发现任务有序调度,使用完任务后回归队列。


总结

在工作中如果有用到的话,可以参考参考,本文主要是分享。

分享:

 when you really think about it? one of the hardest lessons in life is letting go. whether it`s guilt anger love or loss. Change is never easy .We fight to hold on, and we fight to let go. ——我也不知道来自哪,偶然看到的一句话。

如果本文对你有帮助的话,点个赞吧,谢谢!



相关文章
|
1月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
42 0
|
12天前
|
人工智能 芯片 Windows
ARM架构PC退货率与CEO策略透视
ARM架构PC退货率与CEO策略透视
|
15天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
41 3
|
23天前
|
前端开发 Java 测试技术
java日常开发中如何写出优雅的好维护的代码
代码可读性太差,实际是给团队后续开发中埋坑,优化在平时,没有那个团队会说我专门给你一个月来优化之前的代码,所以在日常开发中就要多注意可读性问题,不要写出几天之后自己都看不懂的代码。
57 2
|
1月前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
64 3
|
1月前
|
监控 安全 持续交付
构建高效微服务架构:策略与实践####
在数字化转型的浪潮中,微服务架构凭借其高度解耦、灵活扩展和易于维护的特点,成为现代企业应用开发的首选。本文深入探讨了构建高效微服务架构的关键策略与实战经验,从服务拆分的艺术到通信机制的选择,再到容器化部署与持续集成/持续部署(CI/CD)的实践,旨在为开发者提供一套全面的微服务设计与实现指南。通过具体案例分析,揭示如何避免常见陷阱,优化系统性能,确保系统的高可用性与可扩展性,助力企业在复杂多变的市场环境中保持竞争力。 ####
46 2
|
1月前
|
Java 编译器 数据库
Java 中的注解(Annotations):代码中的 “元数据” 魔法
Java注解是代码中的“元数据”标签,不直接参与业务逻辑,但在编译或运行时提供重要信息。本文介绍了注解的基础语法、内置注解的应用场景,以及如何自定义注解和结合AOP技术实现方法执行日志记录,展示了注解在提升代码质量、简化开发流程和增强程序功能方面的强大作用。
82 5
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
1月前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
42 0
|
1月前
|
安全 Java API
Java中的Lambda表达式:简化代码的现代魔法
在Java 8的发布中,Lambda表达式的引入无疑是一场编程范式的革命。它不仅让代码变得更加简洁,还使得函数式编程在Java中成为可能。本文将深入探讨Lambda表达式如何改变我们编写和维护Java代码的方式,以及它是如何提升我们编码效率的。