LeetCode(算法)- 79. 单词搜索

简介: LeetCode(算法)- 79. 单词搜索

题目链接:点击打开链接

题目大意:

解题思路:

相关企业


  • 字节跳动
  • 亚马逊(Amazon)
  • 微软(Microsoft)
  • 推特(Twitter)
  • 彭博(Bloomberg)
  • Facebook
  • 优步(Uber)
  • 思科(Cisco)
  • 谷歌(Google)
  • 苹果(Apple)

AC 代码

  • Java
// 解决方案(1)
class Solution {
    // 使用 Map 超时
//    private Map<Integer, Boolean> usedMap = new HashMap<>();
    private boolean ok = false;
    private boolean[][] path;
    public boolean exist(char[][] board, String word) {
        path = new boolean[board.length][board[0].length];
        for (int i = 0; i < board.length; i++) {
            for (int j = 0; j < board[i].length; j++) {
                if (ok) {
                    return true;
                }
//                usedMap.clear();
                // 不需要每次都初始化, 比较耗时, 因为回溯的时候会恢复到原始状态
//                path = new boolean[board.length][board[0].length];
                handle(board, i, j, word, 0);
            }
        }
        return ok;
    }
    private void handle(char[][] board, int i, int j, String word, int ptr) {
        if (ok || i >= board.length || i < 0 || j >= board[0].length || j < 0) {
            return;
        }
//        Integer key = i * 10 + j;
        if (path[i][j]) {
            return;
        }
        if (board[i][j] == word.charAt(ptr)) {
            if (ptr + 1 >= word.length()) {
                ok = true;
                return;
            }
            path[i][j] = true;
//            usedMap.put(key, true);
            handle(board, i + 1, j, word, ptr + 1);
            handle(board, i - 1, j, word, ptr + 1);
            handle(board, i, j + 1, word, ptr + 1);
            handle(board, i, j - 1, word, ptr + 1);
//            usedMap.remove(key);
            path[i][j] = false;
        }
    }
}
// 解决方案(2)
class Solution {
    public boolean exist(char[][] board, String word) {
        char[] words = word.toCharArray();
        for(int i = 0; i < board.length; i++) {
            for(int j = 0; j < board[0].length; j++) {
                if(dfs(board, words, i, j, 0)) return true;
            }
        }
        return false;
    }
    boolean dfs(char[][] board, char[] word, int i, int j, int k) {
        if(i >= board.length || i < 0 || j >= board[0].length || j < 0 || board[i][j] != word[k]) return false;
        if(k == word.length - 1) return true;
        board[i][j] = '\0';
        boolean res = dfs(board, word, i + 1, j, k + 1) || dfs(board, word, i - 1, j, k + 1) || 
                      dfs(board, word, i, j + 1, k + 1) || dfs(board, word, i , j - 1, k + 1);
        board[i][j] = word[k];
        return res;
    }
}
  • C++


class Solution {
public:
    bool exist(vector<vector<char>>& board, string word) {
        rows = board.size();
        cols = board[0].size();
        for(int i = 0; i < rows; i++) {
            for(int j = 0; j < cols; j++) {
                if(dfs(board, word, i, j, 0)) return true;
            }
        }
        return false;
    }
private:
    int rows, cols;
    bool dfs(vector<vector<char>>& board, string word, int i, int j, int k) {
        if(i >= rows || i < 0 || j >= cols || j < 0 || board[i][j] != word[k]) return false;
        if(k == word.size() - 1) return true;
        board[i][j] = '\0';
        bool res = dfs(board, word, i + 1, j, k + 1) || dfs(board, word, i - 1, j, k + 1) || 
                      dfs(board, word, i, j + 1, k + 1) || dfs(board, word, i , j - 1, k + 1);
        board[i][j] = word[k];
        return res;
    }
};  
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
222 5
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
179 0
|
2月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
196 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1060 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
8月前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
873 3
|
3月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
4月前
|
机器学习/深度学习 并行计算 算法
MATLAB实现利用禁忌搜索算法解决基站选址问题
MATLAB实现利用禁忌搜索算法解决基站选址问题
165 0
|
5月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
199 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
280 0