例举几种常见的图像数据增广

简介: 例举几种常见的图像数据增广

image.png



一.基于图像处理:


几何变换( Geometric Transformations)


翻转变换( Flipping)


移动( Translation)


旋转变换/反射变换( Rotation/Reflection)


缩放变换( Zoom)


裁剪( Cropping)


颜色变换( Color Space)


色彩抖动( color jittering )



  • 饱和度


  • ⾊调


  • 亮度




内核过滤器( Kernel Filters)


  • 锐化


  • 模糊


随机擦除( Random Erasing )


噪声注入( Noise Injection )


图像混合-融合( Mixup )


扭曲



2.基于深度学习


特征空间增强( Feature Space Augmentation )


对抗生成( Adversarial Training )


基于GAN的数据增强( GAN-based Data Augmentation )


神经风格转换( Neural Style Transfer )




相关文章
|
6月前
|
算法 计算机视觉
图像处理之积分图应用四(基于局部均值的图像二值化算法)
图像处理之积分图应用四(基于局部均值的图像二值化算法)
542 0
|
6月前
|
监控 算法 图计算
图像处理之积分图应用三(基于NCC快速相似度匹配算法)
图像处理之积分图应用三(基于NCC快速相似度匹配算法)
77 0
|
7月前
|
机器学习/深度学习 存储 数据可视化
MambaOut:状态空间模型并不适合图像的分类任务
该论文研究了Mamba架构(含状态空间模型SSM)在视觉任务(图像分类、目标检测、语义分割)中的必要性。实验表明,Mamba在这些任务中效果不如传统卷积和注意力模型。论文提出,SSM更适合长序列和自回归任务,而非视觉任务。MambaOut(不带SSM的门控CNN块)在图像分类上优于视觉Mamba,但在检测和分割任务中略逊一筹,暗示SSM在这类任务中可能仍有价值。研究还探讨了Mamba在处理长序列任务时的效率和局部信息整合能力。尽管整体表现一般,但论文为优化不同视觉任务的模型架构提供了新视角。
109 2
|
6月前
|
算法 计算机视觉 Python
使用分水岭算法分割图像
【6月更文挑战第4天】使用分水岭算法分割图像。
434 4
|
7月前
|
机器学习/深度学习 编解码 算法
SwinFIR:用快速傅里叶卷积重建SwinIR和改进的图像超分辨率训练
SwinFIR:用快速傅里叶卷积重建SwinIR和改进的图像超分辨率训练
212 1
|
7月前
|
机器学习/深度学习 传感器 算法
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
|
机器学习/深度学习 传感器 编解码
【图像重建】基于小波变换图像分解重建(PSNR对比)附matlab代码
【图像重建】基于小波变换图像分解重建(PSNR对比)附matlab代码
|
机器学习/深度学习 编解码 人工智能
深度学习应用篇-计算机视觉-图像增广1:数据增广、图像混叠、图像剪裁类变化类等详解
深度学习应用篇-计算机视觉-图像增广1:数据增广、图像混叠、图像剪裁类变化类等详解
深度学习应用篇-计算机视觉-图像增广1:数据增广、图像混叠、图像剪裁类变化类等详解
|
机器学习/深度学习 传感器 算法
【图像隐藏】基于分数阶傅里叶变换 DFT实现数字水印嵌入提取附含Matlab代码
【图像隐藏】基于分数阶傅里叶变换 DFT实现数字水印嵌入提取附含Matlab代码