Flink mysql-cdc connector 源码解析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 在 Flink 1.11 引入了 CDC 机制,CDC 的全称是 Change Data Capture,用于捕捉数据库表的增删改查操作,是目前非常成熟的同步数据库变更方案。Flink CDC Connectors 是 Apache Flink 的一组源连接器,是可以从 MySQL、PostgreSQL 数据直接读取全量数据和增量数据的 Source Connectors.

在 Flink 1.11 引入了 CDC 机制,CDC 的全称是 Change Data Capture,用于捕捉数据库表的增删改查操作,是目前非常成熟的同步数据库变更方案。Flink CDC Connectors 是 Apache Flink 的一组源连接器,是可以从 MySQL、PostgreSQL 数据直接读取全量数据和增量数据的 Source Connectors.


Flink SQL CDC 内置了 Debezium 引擎,利用其抽取日志获取变更的能力,将 changelog 转换为 Flink SQL 认识的 RowData 数据。RowData 代表了一行的数据,在 RowData 上面会有一个元数据的信息 RowKind,RowKind 里面包括了插入(+I)、更新前(-U)、更新后(+U)、删除(-D),这样和数据库里面的 binlog 概念十分类似。通过 Debezium 采集的数据,包含了旧数据(before)和新数据行(after)以及原数据信息(source),op 的 u表示是 update 更新操作标识符(op 字段的值c,u,d,r 分别对应 create,update,delete,reade),ts_ms 表示同步的时间戳。


下面就来深入 Flink 的源码分析一下 CDC 的实现原理


首先 mysql-cdc 作为 Flink SQL 的一个 connector,那就肯定会对应一个 TableFactory 类,我们就从这个工厂类入手分析一下源码的实现过程,先找到源码里面的 MySQLTableSourceFactory 这个类,然后来看一下它的 UML 类图.



从上图中可以看到 MySQLTableSourceFactory 只实现了 DynamicTableSourceFactory 这个接口,并没有实现 DynamicTableSinkFactory 的接口,所以 mysql-cdc 是只支持作为 source 不支持作为 sink 的,如果想要写入 mysql 的话,可以使用JDBC 的 connector.

然后直接来看 MySQLTableSourceFactory#createDynamicTableSource 方法实现,源码如下所示:


@Override
public DynamicTableSource createDynamicTableSource(Context context) {
    final FactoryUtil.TableFactoryHelper helper =
            FactoryUtil.createTableFactoryHelper(this, context);
    helper.validateExcept(DebeziumOptions.DEBEZIUM_OPTIONS_PREFIX);
    final ReadableConfig config = helper.getOptions();
    String hostname = config.get(HOSTNAME);
    String username = config.get(USERNAME);
    String password = config.get(PASSWORD);
    String databaseName = config.get(DATABASE_NAME);
    String tableName = config.get(TABLE_NAME);
    int port = config.get(PORT);
    Integer serverId = config.getOptional(SERVER_ID).orElse(null);
    ZoneId serverTimeZone = ZoneId.of(config.get(SERVER_TIME_ZONE));
    StartupOptions startupOptions = getStartupOptions(config);
    TableSchema physicalSchema =
            TableSchemaUtils.getPhysicalSchema(context.getCatalogTable().getSchema());
    return new MySQLTableSource(
            physicalSchema,
            port,
            hostname,
            databaseName,
            tableName,
            username,
            password,
            serverTimeZone,
            getDebeziumProperties(context.getCatalogTable().getOptions()),
            serverId,
            startupOptions);
}


这个方法的主要作用就构造 MySQLTableSource 对象,先会从 DDL 中获取 hostname,username,password 等数据库和表的信息,然后去构建 MySQLTableSource 对象.


接着来看一下 MySQLTableSource#getScanRuntimeProvider 这个方法,它会返回一个用于读取数据的运行实例对象


@Override
public ScanRuntimeProvider getScanRuntimeProvider(ScanContext scanContext) {
    RowType rowType = (RowType) physicalSchema.toRowDataType().getLogicalType();
    TypeInformation<RowData> typeInfo =
            scanContext.createTypeInformation(physicalSchema.toRowDataType());
    DebeziumDeserializationSchema<RowData> deserializer =
            new RowDataDebeziumDeserializeSchema(
                    rowType, typeInfo, ((rowData, rowKind) -> {}), serverTimeZone);
    MySQLSource.Builder<RowData> builder =
            MySQLSource.<RowData>builder()
                    .hostname(hostname)
                    .port(port)
                    .databaseList(database)
                    .tableList(database + "." + tableName)
                    .username(username)
                    .password(password)
                    .serverTimeZone(serverTimeZone.toString())
                    .debeziumProperties(dbzProperties)
                    .startupOptions(startupOptions)
                    .deserializer(deserializer);
    Optional.ofNullable(serverId).ifPresent(builder::serverId);
    DebeziumSourceFunction<RowData> sourceFunction = builder.build();
    return SourceFunctionProvider.of(sourceFunction, false);
}


这个方法里面先获取了 rowType 和 typeInfo 信息,然后构建了一个 DebeziumDeserializationSchema 反序列对象,这个对象的作用是把读取到的 SourceRecord 数据类型转换成 Flink 认识的 RowData 类型.接着来看一下 deserialize 方法.


public void deserialize(SourceRecord record, Collector<RowData> out) throws Exception {
    // 获取 op 类型
    Operation op = Envelope.operationFor(record);
    // 获取数据
    Struct value = (Struct)record.value();
    // 获取 schema 信息
    Schema valueSchema = record.valueSchema();
    GenericRowData delete;
    // 根据 op 的不同类型走不同的操作
    if (op != Operation.CREATE && op != Operation.READ) {
        // delete
        if (op == Operation.DELETE) {
            delete = this.extractBeforeRow(value, valueSchema);
            this.validator.validate(delete, RowKind.DELETE);
            delete.setRowKind(RowKind.DELETE);
            out.collect(delete);
        } else {
            // update
            delete = this.extractBeforeRow(value, valueSchema);
            this.validator.validate(delete, RowKind.UPDATE_BEFORE);
            delete.setRowKind(RowKind.UPDATE_BEFORE);
            out.collect(delete);
            GenericRowData after = this.extractAfterRow(value, valueSchema);
            this.validator.validate(after, RowKind.UPDATE_AFTER);
            after.setRowKind(RowKind.UPDATE_AFTER);
            out.collect(after);
        }
    } else {
        // insert
        delete = this.extractAfterRow(value, valueSchema);
        this.validator.validate(delete, RowKind.INSERT);
        delete.setRowKind(RowKind.INSERT);
        out.collect(delete);
    }
}


这里主要会判断进来的数据类型,然后根据不同的类型走不同的操作逻辑,如果是 update 操作的话,会输出两条数据.最终都是会转换成 RowData 类型输出.


接着往下面看是 builder.build() 该方法构造了 DebeziumSourceFunction 对象,也就是说 Flink 的底层是采用 Debezium 来读取 mysql,PostgreSQL 数据库的变更日志的.为什么没有用 canal 感兴趣的同学自己可以对比一下这两个框架


然后来看一下 DebeziumSourceFunction 的 UML 类图



可以发现 DebeziumSourceF unction 不仅继承了 RichSourceFunction 这个抽象类,而且还实现了 checkpoint 相关的接口,所以 mysql-cdc 是支持 Exactly Once 语义的.这几个接口大家都非常熟悉了,这里不再过多介绍.

直接来看一下核心方法 open 和 run 方法的逻辑如下


public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        ThreadFactory threadFactory = (new ThreadFactoryBuilder()).setNameFormat("debezium-engine").build();
        this.executor = Executors.newSingleThreadExecutor(threadFactory);
    }
public void run(SourceContext<T> sourceContext) throws Exception {
    this.properties.setProperty("name", "engine");
    this.properties.setProperty("offset.storage", FlinkOffsetBackingStore.class.getCanonicalName());
    if (this.restoredOffsetState != null) {
        this.properties.setProperty("offset.storage.flink.state.value", this.restoredOffsetState);
    }
    this.properties.setProperty("key.converter.schemas.enable", "false");
    this.properties.setProperty("value.converter.schemas.enable", "false");
    this.properties.setProperty("include.schema.changes", "false");
    this.properties.setProperty("offset.flush.interval.ms", String.valueOf(9223372036854775807L));
    this.properties.setProperty("tombstones.on.delete", "false");
    this.properties.setProperty("database.history", FlinkDatabaseHistory.class.getCanonicalName());
    if (this.engineInstanceName == null) {
        this.engineInstanceName = UUID.randomUUID().toString();
        FlinkDatabaseHistory.registerEmptyHistoryRecord(this.engineInstanceName);
    }
    this.properties.setProperty("database.history.instance.name", this.engineInstanceName);
    String dbzHeartbeatPrefix = this.properties.getProperty(Heartbeat.HEARTBEAT_TOPICS_PREFIX.name(), Heartbeat.HEARTBEAT_TOPICS_PREFIX.defaultValueAsString());
    this.debeziumConsumer = new DebeziumChangeConsumer(sourceContext, this.deserializer, this.restoredOffsetState == null, this::reportError, dbzHeartbeatPrefix);
    this.engine = DebeziumEngine.create(Connect.class).using(this.properties).notifying(this.debeziumConsumer).using(OffsetCommitPolicy.always()).using((success, message, error) -> {
        if (!success && error != null) {
            this.reportError(error);
        }
    }).build();
    if (this.running) {
        this.executor.execute(this.engine);
        this.debeziumStarted = true;
        MetricGroup metricGroup = this.getRuntimeContext().getMetricGroup();
        metricGroup.gauge("currentFetchEventTimeLag", () -> {
            return this.debeziumConsumer.getFetchDelay();
        });
        metricGroup.gauge("currentEmitEventTimeLag", () -> {
            return this.debeziumConsumer.getEmitDelay();
        });
        metricGroup.gauge("sourceIdleTime", () -> {
            return this.debeziumConsumer.getIdleTime();
        });
        try {
            while(this.running && !this.executor.awaitTermination(5L, TimeUnit.SECONDS)) {
                if (this.error != null) {
                    this.running = false;
                    this.shutdownEngine();
                    ExceptionUtils.rethrow(this.error);
                }
            }
        } catch (InterruptedException var5) {
            Thread.currentThread().interrupt();
        }
    }
}


open 方法里面主要是创建了一个单线程化的线程池(它只会用唯一的工作线程来执行任务).所以 mysql-cdc 源是单线程读取的.


run 方法里先是设置了一大堆 debenium 的属性,比如 include.schema.changes 默认是 false ,也就是说不会捕获表结构的变更,所以如果有新增字段的话,目前 Flink 任务是不能动态感知 schema 变化的.主要关心的是 insert update delete 操作.


最核心的地方是构建 DebeziumEngine 对象,然后通过上面的线程池来执行 engine,后面还有一些 metric 相关的逻辑,最后是一个循环的判断任务的状态,如果程序有异常或者被打断就抛出异常中断线程关闭 DebeziumEngine 对象.

相关文章
|
17天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
118 9
|
10天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
10天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
10天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
29 14
|
12天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
56 16
|
19天前
|
存储 关系型数据库 MySQL
double ,FLOAT还是double(m,n)--深入解析MySQL数据库中双精度浮点数的使用
本文探讨了在MySQL中使用`float`和`double`时指定精度和刻度的影响。对于`float`,指定精度会影响存储大小:0-23位使用4字节单精度存储,24-53位使用8字节双精度存储。而对于`double`,指定精度和刻度对存储空间没有影响,但可以限制数值的输入范围,提高数据的规范性和业务意义。从性能角度看,`float`和`double`的区别不大,但在存储空间和数据输入方面,指定精度和刻度有助于优化和约束。
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
57 12
|
29天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
28天前
|
JavaScript 安全 Java
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。

推荐镜像

更多