前面的Scala 和Spark的基础都差不多了,下面是前面的
今天我们继续来学校Spark
RDD的概述
什么是RDD?
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。
RDD的属性
(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。
(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
RDD的创建方式
- 由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
scala> val file = sc.textFile("/spark/hello.txt") 复制代码
- 通过并行化的方式创建RDD
scala> val array = Array(1,2,3,4,5) array: Array[Int] = Array(1, 2, 3, 4, 5) scala> val rdd = sc.parallelize(array) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:26 scala> 复制代码
- 其他方式
读取数据库等等其他的操作。也可以生成RDD。 RDD可以通过其他的RDD转换而来的。
RDD编程API
Spark支持两个类型(算子)操作:Transformation和Action
- Transformation
主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。
常用的Transformation:
- Action
触发代码的运行,我们一段spark代码里面至少需要有一个action操作。
常用的Action:
Spark WordCount代码编写
<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.2.0</version> </dependency> </dependencies> import java.util.Arrays; /** * @author 小六六 * @version 1.0 * @date 2020/12/26 14:43 */ public class SparkWordCountWithJava8 { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setAppName("WortCount"); conf.setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> fileRDD = sc.textFile("E:\\hello.txt"); JavaRDD<String> wordRdd = fileRDD.flatMap(line -> Arrays.asList(line.split(",")).iterator()); JavaPairRDD<String, Integer> wordOneRDD = wordRdd.mapToPair(word -> new Tuple2<>(word, 1)); JavaPairRDD<String, Integer> wordCountRDD = wordOneRDD.reduceByKey((x, y) -> x + y); JavaPairRDD<Integer, String> count2WordRDD = wordCountRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1)); JavaPairRDD<Integer, String> sortRDD = count2WordRDD.sortByKey(false); JavaPairRDD<String, Integer> resultRDD = sortRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1)); resultRDD.saveAsTextFile("E:\\result8"); } 复制代码