特征工程
传统编程的关注点是代码。在机器学习项目中,关注点变成了特征表示。也就是说,开发者通过添加和改善特征来调整模型。“Garbage in, garbage out”。对于一个机器学习问题,数据和特征往往决定了结果的上限,而模型、算法的选择及优化则是在逐步接近这个上限。特征工程,顾名思义,是指从原始数据创建特征的过程。
将原始数据映射到特征
许多机器学习模型都必须将特征表示为实数向量,因为特征值必须与模型权重相乘。
图 1. 特征工程将原始数据映射到机器学习特征
图 1 左侧表示来自输入数据源的原始数据,右侧表示特征矢量,也就是组成数据集中样本的浮点值集。特征工程指的是将原始数据转换为特征矢量。进行特征工程预计需要大量时间。
映射数值
整数和浮点数据不需要特殊编码,因为它们可以与数字权重相乘。如图 2 所示,将原始整数值 6 转换为特征值 6.0 并没有多大的意义:
图 2. 将整数值映射到浮点值
映射分类值
分类特征具有一组离散的可能值。例如,可能有一个名为 street_name 的特征,其中的选项包括:
{'Charleston Road', 'North Shoreline Boulevard', 'Shorebird Way','Rengstorff Avenue'}
由于模型不能将字符串与学习到的权重相乘,因此我们使用特征工程将字符串转换为数字值。
要实现这一点,我们可以定义一个从特征值(我们将其称为可能值的词汇表)到整数的映射。世界上的每条街道并非都会出现在我们的数据集中,因此我们可以将所有其他街道分组为一个全部包罗的“其他”类别,称为 OOV(out-of-vocabulary)分桶。
通过这种方法,我们可以按照以下方式将街道名称映射到数字:
- 将 Charleston Road 映射到 0
- 将 North Shoreline Boulevard 映射到 1
- 将 Shorebird Way 映射到 2
- 将 Rengstorff Avenue 映射到 3
- 将所有其他街道 (OOV) 映射到 4
不过,如果我们将这些索引数字直接纳入到模型中,将会造成一些可能存在问题的限制:
- 我们将学习适用于所有街道的单一权重。例如,如果我们学习到 street_name 的权重为 6,那么对于 Charleston Road,我们会将其乘以 0,对于 North Shoreline Boulevard 则乘以 1,对于 Shorebird Way 则乘以 2,依此类推。以某个使用 street_name 作为特征来预测房价的模型为例。根据街道名称对房价进行线性调整的可能性不大,此外,这会假设你已根据平均房价对街道排序。我们的模型需要灵活地为每条街道学习不同的权重,这些权重将添加到利用其他特征估算的房价中。
- 我们没有将 street_name 可能有多个值的情况考虑在内。例如,许多房屋位于两条街道的拐角处,因此如果模型包含单个索引,则无法在 street_name 值中对该信息进行编码。
要去除这两个限制,我们可以为模型中的每个分类特征创建一个二元向量来表示这些值,如下所述:
- 对于适用于样本的值,将相应向量元素设为 1。
- 将所有其他元素设为 0。
该向量的长度等于词汇表中的元素数。当只有一个值为 1 时,这种表示法称为独热编码;当有多个值为 1 时,这种表示法称为多热编码。
图 3 所示为街道 Shorebird Way 的独热编码。在此二元矢量中,代表 Shorebird Way 的元素的值为 1,而代表所有其他街道的元素的值为 0。
图 3. 通过独热编码映射街道地址
该方法能够有效地为每个特征值(例如,街道名称)创建布尔变量。采用这种方法时,如果房屋位于 Shorebird Way 街道上,则只有 Shorebird Way 的二元值为 1。因此,该模型仅使用 Shorebird Way 的权重。同样,如果房屋位于两条街道的拐角处,则将两个二元值设为 1,并且模型将使用它们各自的权重。
稀疏表示法
假设数据集中有 100 万个不同的街道名称,你希望将其包含为 street_name 的值。如果直接创建一个包含 100 万个元素的二元向量,其中只有 1 或 2 个元素为 ture,则是一种非常低效的表示法,在处理这些向量时会占用大量的存储空间并耗费很长的计算时间。在这种情况下,一种常用的方法是使用稀疏表示法,其中仅存储非零值。在稀疏表示法中,仍然为每个特征值学习独立的模型权重,如上所述。
良好特征的特点
避免很少使用的离散特征值
良好的特征值应该在数据集中出现大约 5 次以上。这样一来,模型就可以学习该特征值与标签是如何关联的。也就是说,大量离散值相同的样本可让模型有机会了解不同设置中的特征,从而判断何时可以对标签很好地做出预测。
例如:house_type 特征可能包含大量样本,其中它的值为 victorian:house_type: victorian;相反,如果某个特征的值仅出现一次或者很少出现,则模型就无法根据该特征进行预测。例如,unique_house_id 就不适合作为特征,因为每个值只使用一次,模型无法从中学习任何规律:
unique_house_id: 8SK982ZZ1242Z
最好具有清晰明确的含义
每个特征对于项目中的任何人来说都应该具有清晰明确的含义。例如,下面的房龄适合作为特征,可立即识别是以年为单位的房龄:
house_age: 27
相反,对于下方特征值的含义,除了创建它的工程师,其他人恐怕辨识不出:
house_age: 851472000
在某些情况下,混乱的数据(而不是糟糕的工程选择)会导致含义不清晰的值。例如,以下 user_age
的来源没有检查值恰当与否:
user_age: 277
实际数据内不要掺入特殊值
良好的浮点特征不包含超出范围的异常断点或特殊的值。例如,假设一个特征具有 0 到 1 之间的浮点值。那么,如下值是可以接受的:
quality_rating: 0.82
quality_rating: 0.37
不过,如果用户没有输入 quality_rating
,则数据集可能使用如下特殊值来表示不存在该值:
quality_rating: -1
为解决特殊值的问题,需将该特征转换为两个特征:
- 一个特征只存储质量评分,不含特殊值。
- 一个特征存储布尔值,表示是否提供了 quality_rating。为该布尔值特征指定一个名称,例如 is_quality_rating_defined。
考虑上游不稳定性
特征的定义不应随时间发生变化。例如,下列值是有用的,因为城市名称一般不会改变。(注意,我们仍然需要将“br/sao_paulo
”这样的字符串转换为独热矢量。)
city_id: "br/sao_paulo"
但收集由其他模型推理的值会产生额外成本。可能值“219”目前代表圣保罗,但这种表示在未来运行其他模型时可能轻易发生变化:
inferred_city_cluster: "219"
表示 (Representation):清理数据
苹果树结出的果子有品相上乘的,也有虫蛀坏果。而高端便利店出售的苹果是 100% 完美的水果。从果园到水果店之间,专门有人花费大量时间将坏苹果剔除或给可以挽救的苹果涂上一层薄薄的蜡。作为一名机器学习工程师,你将花费大量的时间挑出坏样本并加工可以挽救的样本。即使是非常少量的“坏苹果”也会破坏掉一个大规模数据集。
缩放特征值
缩放是指将浮点特征值从自然范围(例如 100 到 900)转换为标准范围(例如 0 到 1 或 -1 到 +1)。如果某个特征集只包含一个特征,则缩放可以提供的实际好处微乎其微或根本没有。不过,如果特征集包含多个特征,则缩放特征可以带来以下优势:
- 帮助梯度下降法更快速地收敛。
- 帮助避免“NaN 陷阱”。在这种陷阱中,模型中的一个数值变成 NaN(例如,当某个值在训练期间超出浮点精确率限制时),并且模型中的所有其他数值最终也会因数学运算而变成 NaN。
- 帮助模型为每个特征确定合适的权重。如果没有进行特征缩放,则模型会对范围较大的特征投入过多精力。
你不需要对每个浮点特征进行完全相同的缩放。即使特征 A 的范围是 -1 到 +1,同时特征 B 的范围是 -3 到 +3,也不会产生什么恶劣的影响。不过,如果特征 B 的范围是 5000 到 100000,你的模型会出现糟糕的响应。
要缩放数值数据,一种显而易见的方法是将 [最小值,最大值]
以线性方式映射到较小的范围,例如 [-1,+1]
。另一种热门的缩放策略是计算每个值的 Z 得分。Z 得分与距离均值的标准偏差相关。换言之:
scaledvalue "=("value"-"mean")/"stddev.
例如,给定以下条件:
- 均值 = 100
- 标准偏差 = 20
- 原始值 = 130
则:
scaled_value = (130 - 100) / 20
scaled_value = 1.5
使用 Z 得分进行缩放意味着,大多数缩放后的值将介于 -3 和 +3 之间,而少量值将略高于或低于该范围。
处理极端离群值
下面的曲线图表示的是加利福尼亚州住房数据集中称为 roomsPerPerson 的特征。roomsPerPerson 值的计算方法是相应地区的房间总数除以相应地区的人口总数。该曲线图显示,在加利福尼亚州的绝大部分地区,人均房间数为 1 到 2 间。不过,请看一下 x 轴。
图 4. 一个非常非常长的尾巴
图 5. 对数缩放仍然留有尾巴