聊聊es的写入流程
Elasticsearch采用多Shard方式,通过配置routing规则将数据分成多个数据子集,每个数据子集提供独立的索引和搜索功能。当写入文档的时候,根据routing规则,将文档发送给特定Shard中建立索引。这样就能实现分布式了。
每个Index由多个Shard组成(默认是5个),每个Shard有一个主节点和多个副本节点,副本个数可配。但每次写入的时候,写入请求会先根据_routing规则选择发给哪个Shard,Index Request中可以设置使用哪个Filed的值作为路由参数,如果没有设置,则使用Mapping中的配置,如果mapping中也没有配置,则使用_id作为路由参数,然后通过_routing的Hash值选择出Shard(在OperationRouting类中),最后从集群的Meta中找出出该Shard的Primary节点。
请求接着会发送给Primary Shard,在Primary Shard上执行成功后,再从Primary Shard上将请求同时发送给多个Replica Shard,请求在多个Replica Shard上执行成功并返回给Primary Shard后,写入请求执行成功,返回结果给客户端。
那你说说具体在 shard上的写入流程呗
在每一个Shard中,写入流程分为两部分,先写入Lucene,再写入TransLog。
写入请求到达Shard后,先写Lucene文件,创建好索引,此时索引还在内存里面,接着去写TransLog,写完TransLog后,刷新TransLog数据到磁盘上,写磁盘成功后,请求返回给用户。这里有几个关键点:
和数据库不同,数据库是先写CommitLog,然后再写内存,而Elasticsearch是先写内存,最后才写TransLog,一种可能的原因是Lucene的内存写入会有很复杂的逻辑,很容易失败,比如分词,字段长度超过限制等,比较重,为了避免TransLog中有大量无效记录,减少recover的复杂度和提高速度,所以就把写Lucene放在了最前面。
写Lucene内存后,并不是可被搜索的,需要通过Refresh把内存的对象转成完整的Segment后,然后再次reopen后才能被搜索,一般这个时间设置为1秒钟,导致写入Elasticsearch的文档,最快要1秒钟才可被从搜索到,所以Elasticsearch在搜索方面是NRT(Near Real Time)近实时的系统。
每隔一段比较长的时间,比如30分钟后,Lucene会把内存中生成的新Segment刷新到磁盘上,刷新后索引文件已经持久化了,历史的TransLog就没用了,会清空掉旧的TransLog。
Lucene缓存中的数据默认1秒之后才生成segment文件,即使是生成了segment文件,这个segment是写到页面缓存中的,并不是实时的写到磁盘,只有达到一定时间或者达到一定的量才会强制flush磁盘。如果这期间机器宕掉,内存中的数据就丢了。如果发生这种情况,内存中的数据是可以从TransLog中进行恢复的,TransLog默认是每5秒都会刷新一次磁盘。但这依然不能保证数据安全,因为仍然有可能最多丢失TransLog中5秒的数据。这里可以通过配置增加TransLog刷磁盘的频率来增加数据可靠性,最小可配置100ms,但不建议这么做,因为这会对性能有非常大的影响。一般情况下,Elasticsearch是通过副本机制来解决这一问题的。即使主分片所在节点宕机,丢失了5秒数据,依然是可以通过副本来进行恢复的。
总结一下,数据先写入内存 buffer,然后每隔 1s,将数据 refresh 到 os cache,到了 os cache 数据就能被搜索到(所以我们才说 es 从写入到能被搜索到,中间有 1s 的延迟)。每隔 5s,将数据写入 translog 文件(这样如果机器宕机,内存数据全没,最多会有 5s 的数据丢失),translog 大到一定程度,或者默认每隔 30mins,会触发 commit 操作,将缓冲区的数据都 flush 到 segment file 磁盘文件中。
说说es的更新流程吧
Lucene中不支持部分字段的Update,所以需要在Elasticsearch中实现该功能,具体流程如下:
- 到Update请求后,从Segment或者TransLog中读取同id的完整Doc,记录版本号为V1。
- 将版本V1的全量Doc和请求中的部分字段Doc合并为一个完整的Doc,同时更新内存中的VersionMap。获取到完整Doc后,Update请求就变成了Index请求。
- 加锁。
- 再次从versionMap中读取该id的最大版本号V2,如果versionMap中没有,则从Segment或者TransLog中读取,这里基本都会从versionMap中获取到。
- 检查版本是否冲突(V1==V2),如果冲突,则回退到开始的“Update doc”阶段,重新执行。如果不冲突,则执行最新的Add请求。
- 在Index Doc阶段,首先将Version + 1得到V3,再将Doc加入到Lucene中去,Lucene中会先删同id下的已存在doc id,然后再增加新Doc。写入Lucene成功后,将当前V3更新到versionMap中。
- 释放锁,部分更新的流程就结束了
详细描述一下ES搜索的过程?
搜索被执行成一个两阶段过程,即 Query Then Fetch;
Query阶段:
查询会广播到索引中每一个分片拷贝(主分片或者副本分片)。每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的优先队列。PS:在搜索的时候是会查询Filesystem Cache的,但是有部分数据还在Memory Buffer,所以搜索是近实时的。 每个分片返回各自优先队列中 所有文档的 ID 和排序值 给协调节点,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。
Fetch阶段:
协调节点辨别出哪些文档需要被取回并向相关的分片提交多个 GET 请求。每个分片加载并 丰富 文档,如果有需要的话,接着返回文档给协调节点。一旦所有的文档都被取回了,协调节点返回结果给客户端。
说说es的写一致性
我们在发送任何一个增删改操作的时候,比如说put /index/type/id,都可以带上一个consistency参数,指明我们想要的写一致性是什么? put /index/type/id?consistency=quorum
- one:要求我们这个写操作,只要有一个primary shard是active活跃可用的,就可以执行
- all:要求我们这个写操作,必须所有的primary shard和replica shard都是活跃的,才可以执行这个写操作
- quorum:默认的值,要求所有的shard中,必须是大部分的shard都是活跃的,可用的,才可以执行这个写操作
聊聊 elasticsearch 深度分页以及scroll 滚动搜索
深度分页
深度分页其实就是搜索的深浅度,比如第1页,第2页,第10页,第20页,是比较浅的;第10000页,第20000页就是很深了。 搜索得太深,就会造成性能问题,会耗费内存和占用cpu。而且es为了性能,他不支持超过一万条数据以上的分页查询。那么如何解决深度分页带来的问题,我们应该避免深度分页操作(限制分页页数),比如最多只能提供100页的展示,从第101页开始就没了,毕竟用户也不会搜的那么深,我们平时搜索淘宝或者京东也就看个10来页就顶多了。
滚动搜索
一次性查询1万+数据,往往会造成性能影响,因为数据量太多了。这个时候可以使用滚动搜索,也就是 scroll 。 滚动搜索可以先查询出一些数据,然后再紧接着依次往下查询。在第一次查询的时候会有一个滚动id,相当于一个锚标记 ,随后再次滚动搜索会需要上一次搜索滚动id,根据这个进行下一次的搜索请求。每次搜索都是基于一个历史的数据快照,查询数据的期间,如果有数据变更,那么和搜索是没有关系的。
es在数据量很大的情况下如何提高性能
filesystem
es每次走fileSystem cache查询速度是最快的 所以将每个查询的数据50% 容量 = fileSystem cache 容量。
数据预热
数据预热是指,每隔一段时间,将热数据 手动在后台查询一遍,将热数据刷新到fileSystem cache上
冷热分离
类似于MySQL的分表分库 将热数据单独建立一个索引 分配3台机器只保持热机器的索引 另外的机器保持冷数据的索引,但有一个问题,就是事先必须知道哪些是热数据 哪些是冷数据
不可以深度分页
跟产品经理说,你系统不允许翻那么深的页,默认翻的越深,性能就越差。
类似于 app 里的推荐商品不断下拉出来一页一页的 类似于微博中,下拉刷微博,刷出来一页一页的,你可以用 scroll api
结束
es可能我自己用的也比较少,就用来做一些搜索,没有用来做bi,所以呢?也不是那么深入吧,希望对大家有帮助,接下来复习下队列