《Python数据可视化编程实战》——5.3 创建3D直方图

简介:

本节书摘来自异步社区《Python数据可视化编程实战》一书中的第5章,第5.3节,作者[爱尔兰]Igor Milovanović ,颛青山 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

5.3 创建3D直方图

像3D柱状图一样,我们可能想创建3D直方图。3D直方图可以用来很容易地识别3个独立变量之间的相关性。可以用它们来从图像中提取信息,其中第三个维度可以是所分析的图像的(x, y)空间通道的强度。

本节将学习如何创建3D直方图。

5.3.1 准备工作

回顾一下,直方图表示的是一些值在特定列(通常叫做“bin”)中的发生率。那么,三维直方图表示的是在一个网格中的发生率。网格是矩形的,表示的是在两列中关于两个变量的发生率。

5.3.2 操作步骤

在这个计算过程中,我们将进行如下操作。

1.使用Numpy,因为其拥有计算两个变量的直方图的函数。

2.用正态分布函数生成x和y,但是给它们提供不同的参数,以便能区分结果直方图的相互关系。

3.用相同的数据集合绘制散点图,展示散点图和3D直方图显示上的差异。

下面是实现上述步骤的代码。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

samples = 25

x = np.random.normal(5, 1, samples)
y = np.random.normal(3, .5, samples)

fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')

# compute two-dimensional histogram
hist, xedges, yedges = np.histogram2d(x, y, bins=10)

# compute location of the x,y bar positions
elements = (len(xedges) - 1) * (len(yedges) - 1)
xpos, ypos = np.meshgrid(xedges[:-1]+.25, yedges[:-1]+.25)

xpos = xpos.flatten()
ypos = ypos.flatten()
zpos = np.zeros(elements)

# make every bar the same width in base
dx = .1 * np.ones_like(zpos)
dy = dx.copy()

# this defines the height of the bar
dz = hist.flatten()

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', alpha=0.4)
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')
ax.set_zlabel('Z Axis')

# plot the same x,y correlation in scatter plot
# for comparison
ax2 = fig.add_subplot(212)
ax2.scatter(x, y)
ax2.set_xlabel('X Axis')
ax2.set_ylabel('Y Axis') 

plt.show()

上述代码生成如图5-3所示的图形。


screenshot

5.3.3 工作原理

我们用np.histogram2d生成了一个直方图,该方法返回了直方图(hist)、x bin边界和y bin边界。

bar3d函数需要x, y空间的坐标,因此需要计算出一般的矩阵坐标,对此我们使用np.meshgrid函数把x和y位置的向量合并到2D空间网格中(矩阵)。我们可以使用它在xy平面位置上绘制矩形条。

变量dx和dy表示每一个矩形条底部的宽度,我们想把它设置为常数,因此我们为xy平面的每一个位置给定的值为0.1 个点的宽度。

z轴上的值(dz)实际上是计算机直方图(在变量hist中),它表示在一个特定的bin中一般的x和y样本的个数。

接下来在散点图(图5-3)中显示了一个2D坐标轴,也呈现了两组相似但起始参数不同的分布间的相互关系。

有时候,3D给予我们更多的信息,并以一个更好的方式让我们来理解数据所包含的内容。然而在更多情况下,3D可视化比2D更加让人感到迷惑,所以在舍弃2D选择3D之前最好慎重考虑。

相关文章
|
2月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
3月前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
3月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
3月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
319 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
346 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
276 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
206 82
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
221 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
483 3

推荐镜像

更多