6000字 “保姆级” 教程 | 讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!(二)

简介: 6000字 “保姆级” 教程 | 讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!(二)

② 访问一列或多列

“访问一列或多列”,相对来说比较容易,直接采用中括号“标签数组”的方式,就可以获取到一列或多列。


方法1:访问一列


df["武汉"]


方法2:访问多列


df[["武汉","广水"]]


③ 访问一行或多行

“访问一行或多行”,方法就比较多了,因此特别容易出错,因此需要特别注意。


方法1:访问一行


# 位置索引
df.iloc[0]
# 标签索引
df.loc["地区1"]


方法2:访问多行


# 位置索引
df.iloc[[0,1,3]]
# 标签索引
df.loc[["地区1","地区2","地区4"]]


④ 访问单元格中某个值

“访问单元格中某个值”,也有很多种方式,既可以使用“位置索引”,也可以使用“标签索引”。


# 使用位置索引
df.iloc[2,1]
# 使用标签索引
df.loc["地区3","天门"]


⑤ 访问多行多列

“访问多行多列”,方法就更多了。我一共为大家总结了5种方法。第一,iloc+切片;第二种,loc+标签数组;第三种,iloc+切片+位置数组;第四种,loc+切片+标签数组。


方法1:iloc+切片


# 选取前3行数据的所有列
df.iloc[:3,:]


方法2:loc+标签数组


# 选取地区1和地区3这两行的武汉、孝感、广水列
df.loc[["地区1","地区3"],['武汉','孝感','广水']]


方法3:iloc+切片+位置数组


# 选取所有行的第2和第5列数据
df.iloc[:,[1,4]]


方法4:loc+切片+标签数组


# 选取地区1和地区2这两行的武汉和广水列
df.loc[:"地区2":,["武汉","广水"]]

4. Excel数据的拼接

在进行多张表合并的时候,我们需要将多张表的数据,进行纵向(上下)拼接。在pandas中,直接使用pd.concat()函数,就可以完成表的纵向合并。


关于pd.concat()函数,用法其实很简单,里面有一个参数ignore_index需要我们注意,ignore_index=True,表示会忽略原始索引,生成一组新的索引。


如果不使用ignore_index参数


df1 = pd.read_excel("concat.xlsx",sheet_name="Sheet1")
df2 = pd.read_excel("concat.xlsx",sheet_name="Sheet2")
pd.concat([df1,df2],ignore_index=True)


结果如下:

image.png

从上表可以看到,里面有两条记录是完全重复的,我们直接可以再调用drop_duplicates()函数,实现去重操作。


df1 = pd.read_excel("concat.xlsx",sheet_name="Sheet1")
df2 = pd.read_excel("concat.xlsx",sheet_name="Sheet2")
pd.concat([df1,df2],ignore_index=True).drop_duplicates()


结果如下:


image.png

5. Excel数据写出

当我们将某个Excel文件中的表,进行读取、数据整理等一系列操作后,就需要将处理好的数据,导出到本地。其实Pandas库中可以导出的数据格式有很多种,我们同样以导出xlsx文件为例,进行讲述。


在Pandas库中,将数据导出为xlsx格式,使用的是DataFrame对象的to_excle()方法,其中这里面有4个常用的参数,详情如下。


excel_writer:表示数据写到哪里去,可以是一个路径,也可以是一个ExcelWriter对象。

sheet_name:设置导出到本地的Excel文件的Sheet名称。

index:新导出到本地的文件,默认是有一个从0开始的索引列,设置index=False可以去掉这个索引列。

columns:选则指定列导出,默认情况是导出所有列。

encoding:有时候导出的文件会出现乱码的格式,这个时候就需要使用该参数设置文件编码格式。

df1 = pd.read_excel("concat.xlsx",sheet_name="Sheet1")
df2 = pd.read_excel("concat.xlsx",sheet_name="Sheet2")
df3 = pd.concat([df1,df2],ignore_index=True)
df3.to_excel(excel_writer="to_excel.xlsx",sheet_name="to_excel",index=None)

6. ExcelWriter的使用

有时候我们需要将多excel表写入同一个工作簿,这个时候就需要借助Pandas中的pd.ExcelWriter()对象,默认对于xls使用xlwt引擎,对于xlsx使用openpyxl引擎。


这里面有两个参数,一个是路径参数Path,表示生成文件的存放路径,一个是时间格式化参数datetime_format,可以将生成文件中的时间列,按照指定时间格式化输出。


df1 = pd.read_excel("concat.xlsx",sheet_name="Sheet1")
df2 = pd.read_excel("concat.xlsx",sheet_name="Sheet2")
with pd.ExcelWriter("excel_writer.xlsx",datetime_format="YYYY-MM-DD") as writer:
    df1.to_excel(excel_writer=writer,sheet_name="df1",index=None)
    df2.to_excel(excel_writer=writer,sheet_name="df2",index=None)


上面第三行代码,我们打开了一个ExcelWriter对象的同时,将所有设计到时间列的数据,进行格式化输出为年-月-日。


接着第四行代码,我们将df1中的数据写到这个ExcelWriter对象中,将这个Sheet取名为df1。


最后第五行代码,再将df2中的数据写入到这个ExcelWriter对象中,同样将Sheet取名为df1。


相关文章
|
5天前
|
存储 数据挖掘 数据处理
Pandas 数据筛选:条件过滤
Pandas 是 Python 最常用的数据分析库之一,提供了强大的数据结构和工具。本文从基础到高级,介绍如何使用 Pandas 进行条件过滤,包括单一条件、多个条件过滤、常见问题及解决方案,以及动态和复杂条件过滤的高级用法。希望本文能帮助你更好地利用 Pandas 处理数据。
109 78
|
2天前
|
数据挖掘 数据处理 数据库
Pandas数据聚合:groupby与agg
Pandas库中的`groupby`和`agg`方法是数据分析中不可或缺的工具,用于数据分组与聚合计算。本文从基础概念、常见问题及解决方案等方面详细介绍这两个方法的使用技巧,涵盖单列聚合、多列聚合及自定义聚合函数等内容,并通过代码案例进行说明,帮助读者高效处理数据。
49 32
|
1天前
|
SQL 数据采集 数据挖掘
Pandas数据合并:concat与merge
Pandas是Python中强大的数据分析库,提供灵活高效的数据结构和工具。本文详细介绍了Pandas中的两种主要合并方法——`concat`和`merge`。`concat`用于沿特定轴连接多个Pandas对象,适用于简单拼接场景;`merge`则类似于SQL的JOIN操作,根据键合并DataFrame,支持多种复杂关联。文章还探讨了常见问题及解决方案,如索引对齐、列名冲突和数据类型不一致等,帮助读者全面掌握这两种方法,提高数据分析效率。
19 8
|
7天前
|
数据挖掘 索引 Python
Pandas数据读取:CSV文件
Pandas 是 Python 中强大的数据分析库,`read_csv` 函数用于从 CSV 文件中读取数据。本文介绍 `read_csv` 的基本用法、常见问题及其解决方案,并通过代码案例详细说明。涵盖导入库、读取文件、指定列名和分隔符、处理文件路径错误、编码问题、大文件读取、数据类型问题、日期时间解析、空值处理、跳过行、指定索引列等。高级用法包括自定义列名映射、处理多行标题和注释行。希望本文能帮助你更高效地使用 Pandas 进行数据读取和处理。
47 13
|
4天前
|
算法 数据挖掘 索引
Pandas数据排序:单列与多列排序详解
本文介绍了Pandas库中单列和多列排序的方法及常见问题的解决方案。单列排序使用`sort_values()`方法,支持升序和降序排列,并解决了忽略大小写、处理缺失值和索引混乱等问题。多列排序同样使用`sort_values()`,可指定不同列的不同排序方向,解决列名错误和性能优化等问题。掌握这些技巧能提高数据分析效率。
31 9
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
108 0
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
46 2
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
99 3
|
2月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
48 1