《大秦赋》最近有点火!于是我用Python抓取了“相关数据”,发现了这些秘密......

简介: 《大秦赋》最近有点火!于是我用Python抓取了“相关数据”,发现了这些秘密......

数据爬取

巧妇难为无米之炊,做数据分析之前最重要的就是“数据获取”。于是,我准备用Python爬取豆瓣上的短评数据以及一些评论时间信息、评价星级信息。

image.png

关于数据的爬取主要说以下几个内容:


1)关于翻页操作

第一页:
https://movie.douban.com/subject/26413293/comments?status=P
第二页:
https://movie.douban.com/subject/26413293/comments?start=20&limit=20&status=P&sort=new_score
第三页:
https://movie.douban.com/subject/26413293/comments?start=40&limit=20&status=P&sort=new_score


上面我们分别展示了第1-3页的页面链接,我们主要是观察其中的规律,其中start是获取评论的起始位置,limit代表获取多少条评论数据。观察结果:3个链接的不同在于这个start的不同,在后续翻页时,我们只需要修改start参数即可。


2)关于反扒说明

对于豆瓣的爬取,其实找到真实的短评链接,是极其容易的。但是这里有一点我必须说明,你可以不登陆爬取数据,但是只能是操作一段时间,过一段时间,会检测到你是爬虫。因此,你一定要登陆后,携带cookie去进行数据的爬取。如果你有时候不知道请求头中,该放一些什么,那么就请都加上,等有空再慢慢总结。


headers = {
    "Accept":"application/json, text/plain, */*",
    "Accept-Language":"zh-CN,zh;q=0.9",
    "Connection":"keep-alive",
    "Host":"movie.douban.com",
    "User-Agent":'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
    "Cookie":'这里是你自己的cookie'
    }


cookie有些人可能又不知道在哪里,还是告诉你一下吧!好多参数都在下面呢,如果你想学好爬虫,那么这些参数代表什么,你总应该需要知道吧。

image.png

最终再补充一点:我本来打算把豆瓣上的《大秦赋》短评,全部爬下来作为分析的素材。然而并没有成功爬取到所有的短评,一波三折,最终只爬到了500条,当然我觉得这也是豆瓣的一种反扒措施,最大可见短评数就500条,多的不给你看。(有大神的话,可以下去研究一下)


数据处理

爬取后的数据,再怎么规整,也和用于分析的数据之间,有一定的差距。因此再分析之前,一定的数据清洗是很有必要的。在数据清洗之前,我们简单看看数据是什么样子的。


df = pd.read_csv("final_all_comment.csv",index_col=0)
df.head(10)

image.png

结果如下:

其实数据还是挺漂亮的,但是我们还是需要做如下处理:


1)剔除重复值

我们认为:如果’评论时间’和’评论内容’完全一致的话,就认为他是同一条评论,需要将其剔除。


print("删除之前的记录数:",df.shape)
df.drop_duplicates(subset=['评论时间','评论内容'],inplace=True,keep='first')
print("删除之前的记录数:",df.shape)


2)评论时间处理

因为《大秦赋》是2020年12月1号开播的,现在是12月16号晚,因此所有的评论数据肯定都是2020年12月开始有的,因此我们只保留有用的“日期”数据(哪一天)。而对于时分秒来说,我们只保留“小时”数据。


df["评论天数"] = df["评论时间"].str[8:-9].astype(int)
df["小时"] = df["评论时间"].str[11:-6].astype(int)


3)评论星级说明

观察原页面的评论星级,可以看到所有的星级并不是以数字展示的,而是用星星进行前端渲染出来的,但是页面的源代码,却展示的是星级数。

image.png

对应到页面源代码中,我们看看又是怎么样子的呢?

image.png

可以看到:3星的数字是30,其它的以此类推,1星的数字是10,2星的数字是20…我看着就是很不爽,因此我在爬取数据的时候,已经将这些数字,全都除以10后计算。


4)评论内容机械压缩去重

对于一条评论来说,有些人可能手误,或者凑字数,会出现将某个字或者词语,重复说多次,因此在进行分词之前,需要做“机械压缩去重”操作。下面是我很早之前写的一段代码,大家可以去看我的CSDN博客,里面有很好的解释。


def func(st):
    for i in range(1,int(len(st)/2)+1):
        for j in range(len(st)):
            if st[j:j+i] == st[j+i:j+2*i]:
                k = j + i
                while st[k:k+i] == st[k+i:k+2*i] and k<len(st):   
                    k = k + i
                st = st[:j] + st[k:]    
    return st
st = "我爱你我爱你我爱你好你好你好哈哈哈哈哈"
func(st)


结果如下:

image.png

利用上述函数,我们可以对爬取到的数据,应用此操作。


def func(st):
    for i in range(1,int(len(st)/2)+1):
        for j in range(len(st)):
            if st[j:j+i] == st[j+i:j+2*i]:
                k = j + i
                while st[k:k+i] == st[k+i:k+2*i] and k<len(st):   
                    k = k + i
                st = st[:j] + st[k:]    
    return st
df["评论内容"] = df["评论内容"].apply(func)


数据可视化操作

俗话说:“字不如表,表不如图”。爬取到的数据,最终做可视化的呈现,才能够让大家对数据背后的规律,有一个清晰的认识。下面我们从以下几个方面来进行数据可视化分析。


评论数随时间的变化趋势

二十四小时内的评论数的变化趋势

星级评分的饼图

大家主要都在评论一些啥

关于数据可视化工具,我就不用pyecharts了,我还是回归原始,用最原始的matplotlib库进行数据可视化的展示。毕竟我们没有什么复杂的展示,代码越简短越好。


1)评论数随时间的变化趋势

从图中可以看出:短评数量在12月4日之前,一直处于上升趋势,在12月4日达到顶峰。和文章最开始的说明一致,前面几天观众对于该剧的期待值较高,但是在12月4日后,突然出现断崖式下降,说明随着该剧的更新,大家有所失望了。

image.png


2)二十四小时内的评论数的变化趋势

最近总听到周围有人在讨论这部剧,下面就来看看大家都是在啥时候追剧呢?从24小时图中可以看出:晚上7-24点,评论急剧上升,大多数人都是6点下班,可能吃个饭到7点左右,或者直接在下班过程中,就开始了一天的追剧。这里还有一波早高峰5-8点,难道睡不着?早上还要起来刷刷据,然后上班。这里还有两个时间段:上午10-11点,中午12-15点,大家可以分析下,肯定有相当一部分小伙伴,正在摸鱼工作呀🤭

image.png


3)星级评分的饼图

剧究竟好不好,看看观众的评分少不了,这也是观众最直观的想法。


1星:很差

2星:较差

3星:还行

4星:推荐

1星:力荐

从下图中可以看出:大家对于该剧的哦=评价还是很低的,1星和2星基本占据了整个饼图,也就是说该剧并没有得到大家的认可。


image.png

4)大家主要都在评论一些啥

其实大家对于该剧最大的争论点,还是由张鲁一饰演的嬴政。40岁的张鲁一,竟然饰演13岁的少年嬴政,然后向36岁朱珠饰演的赵姬分享喜讯,这个角色显色很不协调。很多人支护:难道请不起小演员吗?


还有一部分人,对该剧的剧情和台词很是吐槽,嬴政称如果吕不韦是自己的生父,愿意跟他一起离开秦国浪迹天涯,这真的是少年老成的嬴政能说出来的话吗?


《大秦赋》是“大秦帝国”系列的第四部,原名为《大秦帝国之天下》,播出时改为了《大秦赋》。于是很多人将这部剧和2009年播出的《大秦帝国》作比较,以此来讽刺该剧。


相关文章
|
22天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
20天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
52 3
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
30 1
|
1月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1月前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
2月前
|
数据采集 Python
python爬虫抓取91处理网
本人是个爬虫小萌新,看了网上教程学着做爬虫爬取91处理网www.91chuli.com,如果有什么问题请大佬们反馈,谢谢。
32 4
|
1月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
81 0
|
2月前
|
数据采集 Java Python
如何用Python同时抓取多个网页:深入ThreadPoolExecutor
在信息化时代,实时数据的获取对体育赛事爱好者、数据分析师和投注行业至关重要。本文介绍了如何使用Python的`ThreadPoolExecutor`结合代理IP和请求头设置,高效稳定地抓取五大足球联赛的实时比赛信息。通过多线程并发处理,解决了抓取效率低、请求限制等问题,提供了详细的代码示例和解析方法。
如何用Python同时抓取多个网页:深入ThreadPoolExecutor
|
1月前
|
数据采集 存储 分布式计算
超酷炫Python技术:交通数据的多维度分析
超酷炫Python技术:交通数据的多维度分析