《大秦赋》最近有点火!于是我用Python抓取了“相关数据”,发现了这些秘密......(一)

简介: 《大秦赋》最近有点火!于是我用Python抓取了“相关数据”,发现了这些秘密......(一)

代码及数据获取

本文完整代码和数据,大家关注公众号:数据分析与统计学之美,回复:大秦赋,获取!


数据爬取

巧妇难为无米之炊,做数据分析之前最重要的就是“数据获取”。于是,我准备用Python爬取豆瓣上的短评数据以及一些评论时间信息、评价星级信息。

image.png

关于数据的爬取主要说以下几个内容:


1)关于翻页操作

第一页:
https://movie.douban.com/subject/26413293/comments?status=P
第二页:
https://movie.douban.com/subject/26413293/comments?start=20&limit=20&status=P&sort=new_score
第三页:
https://movie.douban.com/subject/26413293/comments?start=40&limit=20&status=P&sort=new_score


上面我们分别展示了第1-3页的页面链接,我们主要是观察其中的规律,其中start是获取评论的起始位置,limit代表获取多少条评论数据。观察结果:3个链接的不同在于这个start的不同,在后续翻页时,我们只需要修改start参数即可。


2)关于反扒说明

对于豆瓣的爬取,其实找到真实的短评链接,是极其容易的。但是这里有一点我必须说明,你可以不登陆爬取数据,但是只能是操作一段时间,过一段时间,会检测到你是爬虫。因此,你一定要登陆后,携带cookie去进行数据的爬取。如果你有时候不知道请求头中,该放一些什么,那么就请都加上,等有空再慢慢总结。


headers = {
    "Accept":"application/json, text/plain, */*",
    "Accept-Language":"zh-CN,zh;q=0.9",
    "Connection":"keep-alive",
    "Host":"movie.douban.com",
    "User-Agent":'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
    "Cookie":'这里是你自己的cookie'
    }


cookie有些人可能又不知道在哪里,还是告诉你一下吧!好多参数都在下面呢,如果你想学好爬虫,那么这些参数代表什么,你总应该需要知道吧。

image.png

最终再补充一点:我本来打算把豆瓣上的《大秦赋》短评,全部爬下来作为分析的素材。然而并没有成功爬取到所有的短评,一波三折,最终只爬到了500条,当然我觉得这也是豆瓣的一种反扒措施,最大可见短评数就500条,多的不给你看。(有大神的话,可以下去研究一下)


数据处理

爬取后的数据,再怎么规整,也和用于分析的数据之间,有一定的差距。因此再分析之前,一定的数据清洗是很有必要的。在数据清洗之前,我们简单看看数据是什么样子的。


df = pd.read_csv("final_all_comment.csv",index_col=0)
df.head(10)


结果如下:

其实数据还是挺漂亮的,但是我们还是需要做如下处理:


1)剔除重复值

我们认为:如果’评论时间’和’评论内容’完全一致的话,就认为他是同一条评论,需要将其剔除。


print("删除之前的记录数:",df.shape)
df.drop_duplicates(subset=['评论时间','评论内容'],inplace=True,keep='first')
print("删除之前的记录数:",df.shape)


2)评论时间处理

因为《大秦赋》是2020年12月1号开播的,现在是12月16号晚,因此所有的评论数据肯定都是2020年12月开始有的,因此我们只保留有用的“日期”数据(哪一天)。而对于时分秒来说,我们只保留“小时”数据。

df["评论天数"] = df["评论时间"].str[8:-9].astype(int)
df["小时"] = df["评论时间"].str[11:-6].astype(int)


3)评论星级说明

观察原页面的评论星级,可以看到所有的星级并不是以数字展示的,而是用星星进行前端渲染出来的,但是页面的源代码,却展示的是星级数。

image.png

对应到页面源代码中,我们看看又是怎么样子的呢?

image.png

可以看到:3星的数字是30,其它的以此类推,1星的数字是10,2星的数字是20…我看着就是很不爽,因此我在爬取数据的时候,已经将这些数字,全都除以10后计算。


4)评论内容机械压缩去重

对于一条评论来说,有些人可能手误,或者凑字数,会出现将某个字或者词语,重复说多次,因此在进行分词之前,需要做“机械压缩去重”操作。下面是我很早之前写的一段代码,大家可以去看我的CSDN博客,里面有很好的解释。


def func(st):
    for i in range(1,int(len(st)/2)+1):
        for j in range(len(st)):
            if st[j:j+i] == st[j+i:j+2*i]:
                k = j + i
                while st[k:k+i] == st[k+i:k+2*i] and k<len(st):   
                    k = k + i
                st = st[:j] + st[k:]    
    return st
st = "我爱你我爱你我爱你好你好你好哈哈哈哈哈"
func(st)


结果如下:

image.png

利用上述函数,我们可以对爬取到的数据,应用此操作。


def func(st):
    for i in range(1,int(len(st)/2)+1):
        for j in range(len(st)):
            if st[j:j+i] == st[j+i:j+2*i]:
                k = j + i
                while st[k:k+i] == st[k+i:k+2*i] and k<len(st):   
                    k = k + i
                st = st[:j] + st[k:]    
    return st
df["评论内容"] = df["评论内容"].apply(func)


相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
3月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
92 3
|
3月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
154 0
|
3月前
|
数据采集 存储 分布式计算
超酷炫Python技术:交通数据的多维度分析
超酷炫Python技术:交通数据的多维度分析

热门文章

最新文章

推荐镜像

更多