最佳实践—如何优化数据导入导出

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 数据库实际应用场景中经常需要进行数据导入导出,本文将介绍如何使用数据导入导出工具。

测试环境

本文档的测试环境要求如下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16282307_xcluster-20210805
节点规格 16核64GB
节点个数 4个

测试用表如下:


CREATE TABLE `sbtest1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

导入导出工具介绍

PolarDB-X常见的数据导出方法有:

  • mysql -e命令行导出数据
  • musqldump工具导出数据
  • select into outfile语句导出数据(默认关闭)
  • Batch Tool工具导出数据(PolarDB-X配套的导入导出工具)

PolarDB-X常见的数据导入方法有:

  • source语句导入数据
  • mysql命令导入数据
  • 程序导入数据
  • load data语句导入数据
  • Batch Tool工具导入数据(PolarDB-X配套的导入导出工具)

MySQL原生命令使用示例

mysql -e命令可以连接本地或远程服务器,通过执行sql语句,例如select方式获取数据,原始输出数据以制表符方式分隔,可通过字符串处理改成','分隔,以csv文件方式存储,方法示例:


mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM sbtest1;" >/home/data_1000w.txt

## 原始数据以制表符分隔,数据格式:188092293 27267211 59775766593-64673028018-...-09474402685 01705051424-...-54211554755
mysql -h ip -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM sbtest1;" | sed 's/\t/,/g' >/home/data_1000w.csv
## csv文件以逗号分隔,数据格式:188092293,27267211,59775766593-64673028018-...-09474402685,01705051424-...-54211554755

原始数据格式适合load data语句导入数据,使用方法可参考:LOAD DATA 语句,示例如下:


LOAD DATA LOCAL INFILE '/home/data_1000w.txt' INTO TABLE sbtest1;
## LOCAL代表从本地文件导入,local_infile参数必须开启

csv文件数据适合程序导入,具体方式可查看使用程序进行数据导入

mysqldump工具使用示例

mysqldump工具可以连接到本地或远程服务器,详细使用方法请参见使用mysqldump导入导出数据

  • 导出数据示例:
mysqldump -h ip  -P port -u usr -pPassword --default-character-set=utf8mb4 --net_buffer_length=10240 --no-tablespaces --no-create-db --no-create-info --skip-add-locks --skip-lock-tables --skip-tz-utc --set-charset  --hex-blob db_name [table_name] > /home/dump_1000w.sql
  • mysqldump导出数据可能会出现的问题及解决方法,这两个问题通常是mysql client和mysql server版本不一致导致的。
    1. 问题:mysqldump: Couldn't execute 'SHOW VARIABLES LIKE 'gtid\_mode''解决方法:添加“--set-gtid-purged=OFF”参数关闭gtid_mode。
    2. 问题:mysqldump: Couldn't execute 'SHOW VARIABLES LIKE 'ndbinfo\_version''解决方法:查看mysqldump --version和mysql版本是否一致,使用和mysql版本一致的mysql client。
  • 导出的数据格式是SQL语句方式,以Batch Insert语句为主体,包含多条SQL语句,INSERT INTO `sbtest1` VALUES (...),(...),“net_buffer_length”参数将影响batch size大小。
  • SQL语句格式合适的导入数据方式:
方法一:souce语句导入数据
source /home/dump_1000w.sql
方法二:mysql命令导入数据
mysql -h ip -P port -u usr -pPassword --default-character-set=utf8mb4 db_name < /home/dump_1000w.sql

Batch Tool工具使用示例

Batch Tool是阿里云内部开发的数据导入导出工具,支持多线程操作。

  • 导出数据:
## 导出“默认值=分片数”个文件
java -jar batch-tool.jar -h ip -P port -u usr -pPassword -D db_name -o export -t sbtest1 -s ,
## 导出整合成一个文件
java -jar batch-tool.jar -h ip -P port -u usr -pPassword -D db_name -o export -t sbtest1 -s , -F 1
  • 导入数据:
## 导入32个文件
java -jar batch-tool.jar -hpxc-spryb387va1ypn.polarx.singapore.rds.aliyuncs.com -P3306 -uroot -pPassw0rd -D sysbench_db -o import -t sbtest1 -s , -f "sbtest1_0;sbtest1_1;sbtest1_2;sbtest1_3;sbtest1_4;sbtest1_5;sbtest1_6;sbtest1_7;sbtest1_8;sbtest1_9;sbtest1_10;sbtest1_11;sbtest1_12;sbtest1_13;sbtest1_14;sbtest1_15;sbtest1_16;sbtest1_17;sbtest1_18;sbtest1_19;sbtest1_20;sbtest1_21;sbtest1_22;sbtest1_23;sbtest1_24;sbtest1_25;sbtest1_26;sbtest1_27;sbtest1_28;sbtest1_29;sbtest1_30;sbtest1_31" -np -pro 64 -con 32
## 导入1个文件
java -jar batch-tool.jar -h ip -P port -u usr -p password -D db_name -o import -t sbtest1 -s , -f "sbtest1_0" -np

导出方法对比

测试方法以PolarDB-X导出1000w行数据为例,数据量大概2GB左右。

方式 数据格式 文件大小 耗时 性能(行/每秒) 性能(MB/S)
mysql -e命令 导出原始数据 原始数据格式 1998MB 33.417s 299248 59.8
mysql -e命令导出csv格式 csv格式 1998MB 34.126s 293031 58.5
mysqldump工具(net-buffer-length=10KB) sql语句格式 2064MB 30.223s 330873 68.3
mysqldump工具(net-buffer-length=200KB) sql语句格式 2059MB 32.783s 305036 62.8
batch tool工具文件数=32(分片数) csv格式 1998MB 4.715s 2120890 423.7
batch tool工具文件数=1 csv格式 1998MB 5.568s 1795977 358.8

总结:

  1. mysql -e命令和mysqldump工具原理上主要是单线程操作,性能差别并不明显。
  2. Batch Tool工具采用多线程方式导出,并发度可设置,能够极大提高导出性能。

导入方法对比

测试方法以PolarDB-X导入1000w行数据为例,源数据是上一个测试中导出的数据,数据量大概2GB左右。

方式 数据格式 耗时 性能(行/每秒) 性能(MB/S)
source语句(net-buffer-length=10KB) sql语句格式 10m24s 16025 3.2
source语句(net-buffer-length=200KB) sql语句格式 5m37s 29673 5.9
mysql命令导入(net-buffer-length=10KB) sql语句格式 10m27s 15948 3.2
mysql命令导入(net-buffer-length=200KB) sql语句格式 5m38s 29585 5.9
load data语句导入 原始数据格式 4m0s 41666 8.3
程序导入batch-1000thread-1 csv格式 5m40s 29411 5.9
程序导入batch-1000thread-32 csv格式 19s 526315 105.3
batch tool工具文件数=32(分片数) csv格式 19.836s 504133 100.8
batch tool工具文件数=1 csv格式 10.806s 925411 185.1

总结:

  1. source语句和mysql命令导入方式,都是单线程执行SQL语句导入,实际是Batch Insert语句的运用,Batch size大小会影响导入性能。Batch size和mysqldump导出数据时的“net-buffer-length”参数有关。建议优化点如下:
    • 推荐将“net-buffer-length”参数设置大,不超过256K,以增大batch size大小,来提高插入性能。
    • 使用第三方工具,例如mysqldump,进行mydumper(备份)和myloader(导入)等,可多线程操作。
  1. load data语句是单线程操作,性能优于mysql命令和source语句。
  2. 程序导入灵活性较好,可自行设置合适的batch size和并发度,可以达到较好性能。推荐batch大小为1000,并发度为16~32。
  3. Batch Tool工具支持多线程导入,且贴合分布式多分片的操作方式,性能优异。

总结

  1. PolarDB-X兼容MySQL运维上常用的数据导入导出方法,但这些方法大多为MySQL单机模式设计,只支持单线程操作,性能上无法充分利用所有分布式资源。
  2. PolarDB-X提供Batch Tool工具,非常贴合分布式场景,在多线程操作下,能够达到极快的数据导入导出性能。
相关文章
|
11月前
|
人工智能 Kubernetes 监控
Kubernetes 故障诊断 AI 助手
【10月更文挑战第6天】
309 1
|
存储 Linux Windows
Linux zip命令:压缩文件或目录
我们经常会在 Windows 系统上使用 “.zip”格式压缩文件,其实“.zip”格式文件是 Windows 和 Linux 系统都通用的压缩文件类型,属于几种主流的压缩格式(zip、rar等)之一,是一种相当简单的分别压缩每个文件的存储格式,本节要讲的 zip 命令,类似于 Windows 系统中的 winzip 压缩程序,其基本格式如下: [root@localhost ~]#zip [选项] 压缩包名 源文件或源目录列表 注意,zip 压缩命令需要手工指定压缩之后的压缩包名,注意写清楚扩展名,以便解压缩时使用。 下面给大家举几个例子。 【例 1】zip 命令的基本使用。 [r
403 0
Linux zip命令:压缩文件或目录
|
监控 JavaScript Linux
Linux系统之部署Homepage个人导航页
【5月更文挑战第13天】Linux系统之部署Homepage个人导航页
703 1
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。
|
存储 算法 Java
Java性能优化(三):Java基础-HashMap的设计与优化
HashMap核心特性数据结构:HashMap采用哈希表数据结构来存储键值对,利用哈希函数和哈希表快速定位元素位置,提供高效的键值对查询。参数设置初始容量:HashMap允许用户根据使用场景设定初始容量,以优化性能。在预知数据量时,可以通过计算(初始容量=预知数据量/加载因子)来设定合适的初始容量,以减少扩容操作,提高效率。加载因子:加载因子定义了哈希表何时进行扩容的阈值。加载因子较小时,哈希表会更早地进行扩容,减少哈希冲突;加载因子较大时,会提高内存利用率但可能增加哈希冲突。
601 2
|
机器学习/深度学习 人工智能 自然语言处理
【数字人】AIGC技术引领数字人革命:从制作到应用到全景解析
【数字人】AIGC技术引领数字人革命:从制作到应用到全景解析
1135 0
|
消息中间件 Prometheus 监控
深入解析Kafka消息丢失的原因与解决方案
深入解析Kafka消息丢失的原因与解决方案
997 0
|
Dubbo Java 中间件
分布式事务中间件 Seata学习系列之一:初识Seata
本文主要介绍了分布式事务的概念以及当前分布式事务存在的不足之处,同时着重介绍了Seata分布式事务处理机制以及的优势之处。
690 92
分布式事务中间件 Seata学习系列之一:初识Seata
|
存储 数据采集 人工智能
深度探索Aidlux智慧教育中的图像版面分析应用实践
本文详细描述了智慧教育领域的版面分析应用的人工智能训练营项目。项目的目标是构建一个高效的文档图像处理系统,实现文档对象识别和分类,并探索了组卷、以题搜题、文档电子化存储、结构化解析等功能。通过训练模型、实践应用和模型部署验证,分享了在该项目中所获得的见解和心得。
244 0
|
网络协议 前端开发 数据处理
终于有大佬把TCP/IP协议讲清楚了!面试再也不怂面试官提问了
不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更强调“在计算机上实现协议应该开发哪种程序”。