最佳实践—偏高并发场景的实践和优化

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍了如何判断查询语句是否为“点查”,以及如何将查询优化为“点查”。 “点查”是应用访问OLTP数据库的一种常见方式,特点是返回结果前只扫描表中的少量数据,在淘宝上查看订单/商品信息对应到数据库上的操作就是点查。PolarDB-X对点查的响应时间(Response Time, RT)和资源占用做了较多优化,能够支持较高的吞吐,适合高并发读取场景使用。

什么是点查

顾名思义,“点查”是指只扫描少量数据的查询。注意这里说的是“扫描少量数据”而不是“返回少量数据”,比如select * from t1 order by c1 limit 1虽然只返回了一条数据,但如果c1上没有索引,需要先扫描t1上所有数据排序后才能返回结果,不符合“点查”的定义。

单机数据库中,最常见的点查是按照主键(Primary Key, PK)查询数据,通过扫描主键索引快速得到结果,平均只需要扫描logn条记录。如果通过其他条件查询,可以增加局部二级索引(Local Secondary Index,LSI),首先扫描局部二级索引得到主键,然后回表查出完整记录。特殊场景下,如果局部二级索引中包含了查询涉及的所有列,则回表的步骤也可以省略。

PolarDB-X是一个分布式数据库,为了将数据分散到不同数据节点(Data Node,DN)上,引入了分区表的概念,预先将数据切分成多个分区,然后建立分区和DN的映射,其中切分数据需要选取一个或多个列作为切分维度,这些列因此被称为“分区键”。分布式数据库中,查询性能除了与扫描的数据量线性相关,还与扫描的分片数量正相关,因此“点查”的定义还需要加上“扫描少量分区”。

PolarDB-X具备透明分布式能力,默认使用主键作为分区键,按照PK查询时首先定位到数据所在的分区,然后通过分区上的主键索引得到结果,性能最高。如果通过其他条件查询,可以增加全局二级索引(Global Secondary Index,GSI)。使用GSI优化查询的原理与LSI相同,首先查到主键然后回表获得完整记录,主要区别在于GSI本身也是一张分区表,数据与主表保存在不同DN上,回表操作大概率需要经过网络,回表代价高于单机数据库。因此,PolarDB-X支持创建聚簇索引来消除回表,达到与主键查询相同的性能。

注意事项

LSI和GSI本质上是以额外存储空间和写入开销为代价,换取查询性能的方案,使用时需要谨慎评估对写入性能的影响。索引表与主表的数据分布不同,为了保证GSI的数据与主表强一致,所有涉及GSI的写入操作都默认被包装在分布式事务中。相比没有GSI的场景,写入RT会增加2~3倍,同时由于索引表和主表混合并行写入,高并发写入场景下产生分布式死锁的概率会增加。综上所述,建议每张逻辑表上创建不超过3个GSI。

如何识别点查

如上所述,分布式数据库中的点查,是指扫描少量分片和数据的查询。通过查看执行计划,可以确认一个查询语句扫描的分片数,更多执行计划介绍请参见执行计划介绍。以下为一个点查的示例:


> explain select c_custkey, c_name, c_address from customer where c_custkey = 42;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN                                                                                                                                            |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LogicalView(tables="TEST1_000002_GROUP.customer_IVgG_10", sql="SELECT `c_custkey`, `c_name`, `c_address` FROM `customer` AS `customer` WHERE (`c_custkey` = ?)") |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------+

EXPLAIN EXECUTE用于汇总展示DN上的执行计划,由此可以判断查询在DN上是否命中正确的索引。DN节点基于MySQL实现,执行计划与MySQL相同,更多介绍参考 MySQL 官方文档。以下展示一个点查的示例:


> explain execute select c_custkey, c_name, c_address from customer where c_custkey = 42;

+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+
| 1 | SIMPLE | customer | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100 | Using pk access |
+----+-------------+----------+------------+-------+---------------+---------+---------+-------+------+----------+-----------------+

如何将查询优化为点查

不是所有查询语句都可以优化为点查,例如没有任何条件的数据抽取查询select from t1,不合理的分页查询select from t1 where c1 = 1 limit 100000, 10,参数数量随着业务增长而增长的IN查询等。能够优化为点查的语句可以概括为以下两类:

  1. 固定范围扫描的查询:条件中包含等值条件(或可以简化为等值条件),小范围BETWEEN AND条件 ,参数数量固定的IN条件的查询;
  2. 结果行数固定的TopN查询:例如select from t1 where c1 > 42 limit 10 和 select from t1 order by c1 limit 10select * from t1 order by c1 limit 10

对于这两类查询,优化的思路是添加合适的索引,将全表扫描转化为索引扫描,示例如下:


CREATE TABLE `customer` (
`c_custkey` int(11) NOT NULL,
`c_name` varchar(25) NOT NULL,
`c_address` varchar(40) NOT NULL,
`c_nationkey` int(11) NOT NULL,
`c_phone` varchar(15) NOT NULL,
`c_acctbal` decimal(15,2) NOT NULL,
`c_mktsegment` varchar(10) NOT NULL,
`c_comment` varchar(117) NOT NULL,
PRIMARY KEY (`c_custkey`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 dbpartition by hash(`c_custkey`) tbpartition by hash(`c_custkey`) tbpartitions 4;
> explain select * from customer where c_phone = "11";
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].customer_[00-15]", shardCount=16, sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_phone`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `customer` AS `customer` WHERE (`c_phone` = ?)") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

customer表上只有主键索引,因此虽然c_phone指定了等值条件,依然需要扫描全部分片,可以通过添加GSI来优化。


> create global index g_i_phone on customer(c_phone) dbpartition by hash(c_phone);
> explain select * from customer where c_phone = "11";
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(c_custkey="c_custkey", c_name="c_name", c_address="c_address", c_nationkey="c_nationkey", c_phone="c_phone", c_acctbal="c_acctbal", c_mktsegment="c_mktsegment", c_comment="c_comment") |
| BKAJoin(condition="c_custkey = c_custkey", type="inner") |
| IndexScan(tables="TEST1_000000_GROUP.g_i_phone_2CSp", sql="SELECT `c_custkey`, `c_phone` FROM `g_i_phone` AS `g_i_phone` WHERE (`c_phone` = ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].customer_[00-15]", shardCount=16, sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `customer` AS `customer` WHERE ((`c_phone` = ?) AND (`c_custkey` IN (...)))") |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

添加GSI后,查询变为索引表上的点查加回表,回表操作只访问一个分片(执行计划中回表显示为主表上的全表扫描,这是因为确定需要扫描的主表分片依赖索引表的查询结果,explain阶段无法确定)。


> drop index g_i_phone on customer;
> create clustered index g_i_phone on customer(c_phone) dbpartition by hash(c_phone);
> explain select * from customer where c_phone = "11";
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| IndexScan(tables="TEST1_000000_GROUP.g_i_phone_fHmZ", sql="SELECT `c_custkey`, `c_name`, `c_address`, `c_nationkey`, `c_phone`, `c_acctbal`, `c_mktsegment`, `c_comment` FROM `g_i_phone` AS `g_i_phone` WHERE (`c_phone` = ?)") |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

使用聚簇索引代替GSI后,由于索引表中包含了主表上的所有列,不再需要回表,执行计划变为索引表上的点查。

以上示例阐述了通过索引优化点查性能的一般过程,其中的关键点是根据查询特征找到适合添加索引的列。对于包含多个条件比较复杂的查询,可以通过PolarDB-X内置的索引推荐功能来找到合适的LSI和GSI,详情请参考智能索引推荐

相关文章
|
敏捷开发 Java 测试技术
「架构」模型驱动架构设计方法及其运用
本文探讨了MDA在软件开发中的应用,从需求分析到测试,使用UML建模功能需求,通过PIM设计架构,自动生成代码以减少错误。MDA提升了可维护性、可扩展性和可移植性,通过工具如Enterprise Architect和Eclipse MDT支持自动化转换。虽然有挑战,如模型创建和平台转换,但结合敏捷方法和适当工具能有效解决,从而提高开发效率和软件质量。
1166 0
「架构」模型驱动架构设计方法及其运用
|
数据建模 测试技术 应用服务中间件
在阿里云申请SSL证书多少钱?免费版与付费版申请流程介绍
阿里云2024年提供免费及付费SSL证书,免费版年领限20张,适合测试环境,352元/年起售付费版。个人/企业用户一年可领20张免费DV单域名证书。付费证书享折扣,如WoSign DV仅352元/年。下文将指导您快速领取、申请阿里云提供的免费版和收费版SSL证书。
在阿里云申请SSL证书多少钱?免费版与付费版申请流程介绍
|
vr&ar 开发者 Python
探索未来的现实世界:混合现实(AR)与增强现实(VR)技术的应用Python异步编程:解放性能的重要利器——异步IO库深入解析
在当今科技飞速发展的时代,混合现实(AR)和增强现实(VR)技术正迅速改变着我们对现实世界的认知和体验。本文将介绍这两种技术的基本原理以及它们在不同领域的广泛应用,包括教育、医疗、旅游、娱乐等。混合现实和增强现实技术为我们带来了全新的沉浸式体验,将人与数字世界融合在一起,为未来的现实世界带来无限可能。 在当今信息爆炸的时代,高效的编程方式成为开发者追求的目标。Python异步编程与其强大的异步IO库(例如asyncio)成为了解放性能的重要利器。本文将深入解析Python异步编程以及异步IO库的原理和使用方法,帮助读者进一步掌握这一技术,提升开发效率。
203 4
|
存储 安全 流计算
flink timer定时器
flink timer定时器
|
存储 缓存 分布式计算
性能估算-汇总【转】
假期重新把之前在新浪博客里面的文字梳理了下,搬到这里。
846 0
|
消息中间件 存储 调度
【Android】Handler 机制 ( Handler | Message | Looper | MessageQueue )(一)
【Android】Handler 机制 ( Handler | Message | Looper | MessageQueue )(一)
221 0
|
3天前
|
人工智能 运维 安全
|
5天前
|
SpringCloudAlibaba 负载均衡 Dubbo
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
本文对比分析了SpringCloudAlibaba框架下Feign与Dubbo的服务调用性能及差异。Feign基于HTTP协议,使用简单,适合轻量级微服务架构;Dubbo采用RPC通信,性能更优,支持丰富的服务治理功能。通过实际测试,Dubbo在调用性能、负载均衡和服务发现方面表现更出色。两者各有适用场景,可根据项目需求灵活选择。
395 124
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
|
8天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
744 109