ClickHouse性能测试

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: ClickHouse性能测试

ClickHouse简介

ClickHouse是战斗民族Yandex公司出品的OLAP开源数据库,简称CH,也有人简称CK,是目前市面上最快的OLAP数据库。性能远超Vertica、Sybase IQ等。

CH具有以下几个特点:

  1. 列式存储,因此数据压缩比高。
  2. 向量计算,且支持多核CPU并行计算,并且执行每个SQL时都力求榨干CPU性能。
  3. 基于Shared nothing架构,支持分布式方案。
  4. 支持主从复制架构。
  5. 兼容大部分SQL语法,其语法和MySQL尤其相近。
  6. 数据实时更新。
  7. 不支持事务,不适合高频更新数据。
  8. 建议多用宽表,但不建议总是查询整数据行中的所有列。

简言之,如果你有以下业务场景,可以考虑用CH:

  1. 海量数据,但又不希望单节点的存储空间消耗太高。
  2. 宽表,为了业务方便,可能会把很多相关数据列都整合到一个表里。
  3. 基于SQL的查询方式,提高程序的适用性和可移植性。

性能测试

我选用了CH官方提供的一个测试方案:SSBM (Star Schema Benchmark)。

测试机配置:

腾讯云CVM主机
- 标准型S5机型
- 4核16G
- 外挂500G SSD云硬盘

数据盘采用xfs文件系统,ioscheduler采用deadline方式:

[root@yejr.me]# cat /etc/fstab

/dev/vdb /data xfs defaults,noatime,nodiratime,nobarrier 0 0

[root@yejr.me]# cat /sys/block/vdb/queue/scheduler
[mq-deadline] kyber none

生成测试数据。

# 下载SSBM工具
[root@yejr.me]# git clone https://github.com/vadimtk/ssb-dbgen.git
[root@yejr.me]# cd ssb-dbgen
[root@yejr.me]# make

# 生成测试数据,机器性能和磁盘有限,所以指定 -s 100
[root@yejr.me]# ./dbgen -s 100 -T c
[root@yejr.me]# ./dbgen -s 100 -T p
[root@yejr.me]# ./dbgen -s 100 -T s
[root@yejr.me]# ./dbgen -s 100 -T l

[root@yejr.me]# wc -l *tbl
3000000 customer.tbl
1400000 part.tbl
200000 supplier.tbl

[root@yejr.me]# ls -l *tbl
-rw-r--r-- 1 root root 331529327 Mar 28 21:17 customer.tbl
-rw-r--r-- 1 root root 140642413 Mar 28 21:17 part.tbl
-rw-r--r-- 1 root root 19462852 Mar 28 21:17 supplier.tbl

创建测试表,根据CH官网提供的建表DDL直接创建即可,参考这里:Star Schema Benchmarkhttps://clickhouse.tech/docs/en/getting_started/example_datasets/star_schema/ )。

导入数据。

[root@yejr.me]# clickhouse-client --query "INSERT INTO customer FORMAT CSV" < customer.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO part FORMAT CSV" < part.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
[root@yejr.me]# clickhouse-client --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl

这是导入测试数据的耗时以及导完后表空间大小的数据。

表数据量 耗时(秒) tbl文件大小 表空间大小
customer 3,000,000 2.923 317M 116M
part 1,400,000 1.573 135M 25M
supplier 200,000 0.305 19M 7.7M
lineorder 600,037,902 837.288 67G 17G
lineorder_flat 600,037,902 2318.616
54G

只看最大的lineorder表,对tbl文件的压缩比可以达到4:1,如果是相对常规的OLTP数据库,其压缩比显然还要更高。

运行SSBM的几个标准查询耗时

SQL 耗时(秒) 扫描行数(10万) 返回行数
Q1.1 2.123 91.01 1
Q1.2 0.320 7.75 1
Q1.3 0.053 1.81 1
Q2.1 17.979 600.04 280
Q2.2 3.625 600.04 56
Q2.3 3.263 600.04 7
Q3.1 6.906 546.67 150
Q3.2 5.330 546.67 600
Q3.3 3.666 546.67 24
Q3.4 0.058 7.76 4
Q4.1 10.110 600.04 35
Q4.2 1.928 144.42 100
Q4.3 1.373 144.42 800

每次扫描这么多数据量,但这些统计分析为主的SQL查询耗时却并不大,足见CH的计算性能了。

今天先简单介绍到这里,以后有机会再继续分享。

            </div>
相关文章
|
开发框架 测试技术 Serverless
通过性能测试PTS对Serverless应用进行性能压测
本文为您介绍如何利用性能测试PTS对Serverless应用进行性能压测
273 0
|
搜索推荐 Ubuntu 测试技术
记录一次我做的influxDB性能测试
2018年做了一次influxDB测试,这里记录一下
1678 0
|
安全 大数据 测试技术
Mongodb亿级数据量的性能测试比较完整收藏一下
原文地址:http://www.cnblogs.com/lovecindywang/archive/2011/03/02/1969324.html 进行了一下Mongodb亿级数据量的性能测试,分别测试如下几个项目: (所有插入都是单线程进行,所有读取都是多线程进行) 1) 普通插入性能 (插...
3946 0
|
6月前
|
运维 算法 测试技术
性能测试概述
性能测试概述
|
6月前
|
数据可视化 Java 测试技术
JMeter 如何实现 Elasticsearch 8.X 性能测试?
JMeter 如何实现 Elasticsearch 8.X 性能测试?
134 0
|
6月前
|
SQL 分布式计算 测试技术
hudi性能测试
hudi性能测试
149 0
|
6月前
|
缓存 测试技术 数据库
性能测试最佳实践
性能测试最佳实践
|
SQL 分布式计算 测试技术
从 Clickhouse 到 Apache Doris:有赞业务场景下性能测试与迁移验证
当前,电商运营的主要痛点不仅来自多变的市场和客户需求,也受困于碎片化用户触达等带来的竞争与挑战。为了深度挖掘用户价值、培养用户忠诚度、实现业绩增长,有赞为商家搭建了全方位 OLAP 分析系统,提供实时与离线分析报表、智能营销与人群圈选等 SaaS 服务。本文将详细介绍有赞从 Clickhouse 至 Apache Doris 的迁移规划和性能对比测试实践,分享如何基于 Apache Doris 统一 OLAP 技术栈,并满足庞大数据体量下的实时分析与极速查询,最终有赞在多个场景下实现查询平均提速 200% 。
341 0
|
测试技术 网络安全
性能测试(20)——分布式压测
在使用JMeter进行性能测试时,如果并发数比较大(比如项目需要支持10000并发),单台电脑的(CPU和内存)可能无法支持,这时 可以使用JMeter提供的分布式测试的功能。
333 0
性能测试(20)——分布式压测
|
缓存 运维 监控
Cassandra 性能压测及调优实战
掌握Cassandra分布式数据库性能压测及性能调优 作者:孤池
3844 1
Cassandra 性能压测及调优实战