不同于谷歌,京东选择从应用场景出发迭代对话式 AI 技术

简介: 1966 年,一个由 MAD-SLIP 程式语言编写,在 36 位元架构的 IBM 7094 大型电脑上运作,所有程式编码仅有 200 行左右的聊天机器人,被 MIT 的德裔电脑科学家 Joseph Weizenbaum 发明出来,名叫“Eliza”。

1966 年,一个由 MAD-SLIP 程式语言编写,在 36 位元架构的 IBM 7094 大型电脑上运作,所有程式编码仅有 200 行左右的聊天机器人,被 MIT 的德裔电脑科学家 Joseph Weizenbaum 发明出来,名叫“Eliza”。

“Eliza”和机器学习同期出现,早于经典教材的出版,甚至早于多层神经网络和半监督学习的发明。可以说,在“Eliza”的身上,集中反映了我们对人工智能最初的诉求:在某些场景或工作中,替换人类的角色。于是,关于对话机器人的研发尝试,几乎贯穿了整个人工智能的发展史。

20 世纪是个筑梦的世纪,进入 21 世纪后,人们发现,要推动 AI 发展,不仅要有强悍的学术资源,也要有充沛的产业基础。于是关于对话机器人的探索进入了新的阶段,即由如何通过图灵测试打造类人 AI ,转为如何进入企业生产环节,以最直观的方式实现降本增效。

有报告将这种应用描述为:“将智能对话系统加载在服务场景的对话机器人中,以文本、语音和多模态数字人等产品形式与终端用户交互,应用在客户服务、元宇宙、智能决策、泛交互等服务场景。”

因此,京东、百度、阿里、亚马逊云科技、谷歌等企业纷纷高速推进对话机器人的研发。从 2012 到 2022 的十年间,据统计,已经有 103 家企业(去重)获得投资;2022 年 4 月,法国对话式 AI 公司 Mindsay 被收购,也是这一趋势的集中体现。

但人们也很快发现,要使对话式 AI 具备工业级的服务能力,只像 56 年前它的先辈 Eliza 一样写 200 行代码,是根本不可能的。今天的对话式 AI 要攻克大量技术性问题,尤其是在语音对话方面,技术壁垒可以总结为口语不流利(磕巴、语句断断续续)问题、话语权决策问题、鲁棒性问题。

对话式 AI 中语音对话的三大技术壁垒

口语不流利问题

相较于在线机器人,语音对话系统会出现一个特有现象:口语化的表述,通常是不流利的。因为现有的语义理解模型都是基于书面用语等常规文本,而现实生活中,很少有人能一板一眼地与机器人聊天。用户在自然的口语对话中,往往会夹杂着重复、停顿、自我修正等表述特点,例如:

重复:下礼拜下礼拜二三吧好吗。

停顿:呃,就是说,我暂时不感兴趣。

自我修正:可以明天,不是,后天给我送货吧。

以上这种口语中的不流利、磕巴现象,通常会对下游的语义理解造成很大的干扰。而在此类问题的表象之下,是语言作为文化的载体,其本身蕴含的巨大的复杂性。重复、停顿、修正,在不同文化背景、不同地区,都因方言习惯而存在截然不同的呈现方式。甚至,时间也是口语演变的变量之一 —— 在网络时代,几乎每年都会诞生很多俚语,给 AI 识别造成了困难。

话语决策权问题

正确理解不流利的口语,还只是交流的一个方面。于对话机器人来说,更重要的是做出回复。我们平时聊天,很容易判断应该在什么时候接话,而对于智能对话系统来说,判断在合适的时机接过话语权,并且在听者和说话者之间流畅、自然地转换,显然是一件“超纲”的事情。

当前,市面上的常规解决方案是采用 VAD 检测用户静默时长,当用户静默时长超过阈值(比如 0.8s~1s)时,系统就会接过话语权。但是,这种固定静默时长的方式存在一些问题:如用户并未讲完且在思考中,但是静默时长超过阈值,这时系统响应就会过于迅速敏感;而有时用户的交互迅速简明,这时系统仍然等待静默时长达到设定阈值才接过话语权,这时系统响应迟钝,可能造成用户重复回答。

image.png

因此,如果想要人机交互更为自然,就不能仅凭声学信号来做判断,还必须要考虑语义是否完整,如果机器能够学会“合理打断”,用户体验会明显提升,但遗憾的是,大多数研究语音识别厂商都不太重视这一点。

**鲁棒性问题
**

除了口语不流利、话语决策权问题,鲁棒性也值得特别关注。

对于高可用系统来说,围绕鲁棒性的设计是必要的、合理的。但对于对话式 AI 而言,这里的鲁棒性所关注的问题,则显得有些“强人所难”。

在常规的语音对话系统中,语义理解模块是基于 ASR(Automatic Speech Recognition,自动语音识别技术)的识别结果进行的。然而由于噪声、背景人声等因素,往往会对 ASR 识别造成干扰,通常表现为出现一些发音相似的识别错误。如何解决噪声的干扰,实现高准确度的识别,就是此处的“鲁棒性”所描述的问题。下方表格是个具体参照:

image.png

声音是一系列信息的集合,所以人耳鉴别杂音不完全靠听,也靠语义联系、经验分析、背景知识。对于机器而言,这无疑是个艰巨的任务。

技术攻坚的破局思路及解决方案

关于上述技术挑战,业内也在寻求新的破解路径,其中有两家企业取得了非常不错的进展,足可为业内参考,一家在美国名叫 Google,一家在中国名叫京东。

前段时间,谷歌在 I/O 大会上宣布将 AI 语音助手 Google Assistant 进行全面升级:在开放式处理方面进一步优化了神经网络模型,使其甚至可以理解非连续的、比较口语化的句子。除此之外,谷歌还发布了专为对话应用程序构建的人工智能系统 LaMDA 2 的一些 demo,展示了其在想象力方面、开放且不跑题以及理解复杂任务等方面的特性。

以零售业起家的京东则探索出了与谷歌不同的发展路径,首先在应用场景上,谷歌的闲聊机器人主要针对 To C 业务,以一问一答式的交互场景为主;而京东的智能对话系统以 To B 为主,往往是来自真实场景的具体问题或任务驱动型的对话,其对垂直领域知识的专业度和回答精确度有着更高的要求。

在孵化场景方面,京东也走出了与大部分科技企业不同的路,其主要是从大规模实践中孵化技术,研发更加易用的 AI 技术。

image.png

由于京东每天有千万级的对话量,通过和用户间的不断沟通、测试最佳应答方式,依托于京东云的技术能力,推出了业界首个大规模商用的智能对话与交互系统“京东言犀”。此外,模型满意验证、对抗模型改进等核心技术,都需要在真实场景中才能得以验证,上文提到的口语不流利、话语决策权等问题,京东也早在谷歌发布之前从实际场景中洞察到了需求,并加以优化和改进。

而针对这些问题,言犀给出的解决方案是基于语音 + 语义的联合建模技术。

口语不流利——序列标注

在语音识别的训练过程中,输入的原始框就含有很多不流畅的句子,随后对每个字进行标注分类,并决定这个字保留还是去除。即采用序列标注模型对句子中的每个字进行分类,从而识别句子中需要删除的冗余成分,达到口语顺滑的目的。

为了缓解模型对于标注数据的过度依赖,京东言犀采用自监督学习的方式,通过对大规模的书面流畅文本进行插入、删除等操作,从而生成大量的不流畅文本。同时,还联合语法判别任务,对于输入的文本,从整个句子层面判断是否语法正确(这里认为原来的流畅文本是语法正确的,而构造的非流畅文本则含有语法错误)。

我们可以把它理解成一本言犀专属的“口语词典”,比如“就是说,我暂时不感兴趣”,“就是说”是可去除的口语词,可以将其收集到口语词典中。最后,再将完整流畅的句子“我暂时不感兴趣”,输入下一道模型进行后续的语义理解。

话语决策权——多模态

简单来说,多模态技术就是不再单凭语音信号来判断是否接过话语权,而是分别使用语音、语义以及时间三种不同纬度的特征来判断是否切换话语权。

对于语义特征,言犀会采用 transformer 等各种语言模型,根据上下文来判断当前语句是否完整;对于语音特征,言犀会将音频片段分桢,提取每一帧的特征向量,再将其输入到一个深层的 ResNet 网络,提取其特征表示。如果提取的特征有音调偏低、语速变慢等特点,则代表可能是结尾的最后一个字;此外,还会基于语音片段的时长、语速、声调等时间维度进一步判断,最后通过融合三种不同模态的特征,来判断是否接过话语权。

值得一提的是,针对多模态技术,除了刚才提到的语音 + 语义外,言犀目前还融入了视觉、图像等技术,以虚拟数字人等方式实现更自然的交互。比如,春节期间推出的客服数字人客服芊言,便是语音识别、自然语言理解、视频驱动等多模态技术融合的成果。

image.png

关于多模态技术的研究在近几年逐步流行了起来,具体的落地场景各大厂也仍在摸索阶段。京东对于多模态技术的快速突破得益于何晓冬博士,作为多模态技术的开拓者之一,早在 2015 年的时候,何晓冬就提出了语言 - 视觉深度多模态语义模型(DMSM),以及在 2018 年进一步提出了现在业界广为采用的 Bottom-Up and Top-Down attention(BUTD)跨模态注意力机制,并一直推动和见证了多模态技术的实用化,例如在客户服务、多模态数字人方向均已形成规模化落地。同时也带领团队在 NeurIPS、CVPR、AAAI、ACL 等国际 AI 顶级会议上发表了近 130 多篇相关论文,对比业界通常的研发周期,无疑是非常快的速度。

**鲁棒性问题——结合音素的鲁棒语义理解模型
**

结合音素的鲁棒语义理解模型 CASLU,指的是即使文字识别错误(如上文例子,鎏金瓶—>刘精品),但是其对应的音素基本是正确的(l iu2 j ing1 p),系统就可以作出正确的语义理解。

具体来说,先将音素序列与文本序列分别进行编码,再通过 cross attention 机制,将文本的表征和音素的表征实现有效的融合,利用音素信息来结合它的文本信息做一个文本的增强表示,最后再通过全连接层进行意图分类,最后达到修正错误字的目的。

除此之外,在训练过程中,京东言犀还采用数万小时含有不同噪音、方言的真实场景数据进行迭代;再把正常语境下的句子通过加噪、变速、同混响等方式,变成一种含有噪声或方言的数据再输入到模型里,从而进一步提升模型的抗干扰能力。

多场景应用,传递技术的温度

当然,技术方案只是一部分,京东言犀的迭代思路是:从场景中来,回到场景中去。

比如,传统的政务热线,一直被吐槽“打不通、说不清、办不了”,这就对智能对话系统提出了要求:要响应快,能准确识别方言浓厚、断断续续的句子,以及在力所能及的范围内减轻人工客服的压力。为了提高用户满意度、实现降本增效,大同 12345 政务热线与言犀合作,经过运营人员一段时间的数据追踪发现:呼入电话接起率达到了 100%。同时,言犀也自动完成了工单创建、智能匹配至对应委办局、跟踪工单执行情况、自动对市民回访等全闭环流程。

在疫情反复的当下,如何促使全市人民进行健康排查、核酸检测是首要任务之一。北京市通州区政府联合京东言犀,针对近 3 日未做核酸检测的市民进行了超过 50 万人的智能外呼排查,在 5 个小时内,通知、提醒了近 40 万人参与核酸检测,为疫情防控大大减轻了压力。其中,针对北京来自全国各地,口音皆不相同、电话端还存在高噪音等复杂环境问题,言犀利用其深度语音识别引擎以及口语顺滑、话语权决策等前沿技术进行优化,保证通话流畅自然,用科技助力疫情防控。

除此之外,在养老行业,言犀联合天津市河西区的智慧养老服务平台,每天早上 9 点自动给近 5000 名独居老人拨打问候电话,避免其突发疾病或无人照顾等情况。

写在最后

数字客服、语音助手、智能外呼... 基于智能对话系统的应用逐渐拓展到了零售、金融、政务、物流、交通等多个行业。

作为人工智能领域的关键技术,对话式 AI 将会成为未来最有价值的领域。中国也正在以场景驱动人工智能技术的迭代与发展,相信在整个产业的共同探索下,中国的人工智能将不断朝着“个性化”进阶,可以针对不同的人都有不同的对应方案,真正做到千人千面。

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
5天前
|
人工智能 Linux API
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
60 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
|
9天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
45 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
9天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
8天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
56 14
|
9天前
|
传感器 机器学习/深度学习 人工智能
AI视频监控卫士技术介绍:智能化河道管理解决方案
AI视频监控卫士系统,通过高清摄像头、智能传感器和深度学习技术,实现河道、水库、城市水务及生态保护区的全天候、全覆盖智能监控。系统能够自动识别非法行为、水质变化和异常情况,并实时生成警报,提升管理效率和精准度。
58 13
|
8天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
9天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
24 6
|
4天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。
|
9天前
|
缓存 人工智能 负载均衡
AI革新迭代:如何利用代理IP提升智能系统性能
在人工智能快速发展的背景下,智能系统的性能优化至关重要。本文详细介绍了如何利用代理IP提升智能系统性能,涵盖数据加速与缓存、负载均衡、突破地域限制、数据传输优化和网络安全防护等方面。结合具体案例和代码,展示了代理IP在实际应用中的价值和优势。
23 0