如何修复老照片,Bringing-Old-Photos-Back-to-Life机器学习开源项目安装使用 | 机器学习(2)

简介: 如何修复老照片,Bringing-Old-Photos-Back-to-Life机器学习开源项目安装使用 | 机器学习

项目使用

官方给到的图,我就不用了,不能说明问题。我自己准备了两种图,一张是一张人脸的,一张是多张人脸的。

image.png

先按照官方给出的命令跑跑看

image.png

我们直接使用最下面这个命令,包含划痕去除与高度还原。看一下执行情况。

(bobl) D:\spyder\Bringing-Old-Photos-Back-to-Life>python run.py --input_folder E:\csdn\老照片 --output_folder result1/ --GPU -1 --with_scratch --HR
Running Stage 1: Overall restoration
initializing the dataloader
model weights loaded
directory of testing image: E:\csdn\老照片
processing 1.jpg
processing 2.jpg
Mapping: You are using multi-scale patch attention, conv combine + mask input
Now you are processing 1.png
C:\ProgramData\Anaconda3\envs\bobl\lib\site-packages\torch\nn\functional.py:3635: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4
.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  "See the documentation of nn.Upsample for details.".format(mode)
Now you are processing 2.png
Finish Stage 1 ...
Running Stage 2: Face Detection
12
1
Finish Stage 2 ...
Running Stage 3: Face Enhancement
dataset [FaceTestDataset] of size 13 was created
The size of the latent vector size is [16,16]
Network [SPADEGenerator] was created. Total number of parameters: 92.1 million. To see the architecture, do print(network).
hi :)
Finish Stage 3 ...
Running Stage 4: Blending
Finish Stage 4 ...
All the processing is done. Please check the results.
(bobl) D:\spyder\Bringing-Old-Photos-Back-to-Life>



输出的文件不但有最终的结果,也有检测出来的每个脸的处理前后效果。结果结构如下:


image.png


验证一下


1、多人照片最终的效果验证,下面上图是输出结果图,下图是原始图。可以看出有些划痕已经消失,但是还是有一些,不过整体的任务更立体鲜明了。


2、单人照片最终效果验证,下面上图为结果图,下图为原始图。单人就很明显了,不但划痕都消除了,人也更清晰立体,效果是真不错。




3、模型也会把多人图中的每张脸都识别出来,并且跑出结果,可以对比一下看看,细节还是修复的很好

屏幕快照 2022-06-01 上午12.55.01.png


总结

官方还给出了其他的命令,就不一一验证了。整体的效果是非常好的,只是在多人图的时候还有些瑕疵,瑕不掩瑜。


项目需要很多模型文件,我把我的整个项目打包,解压后模型文件都在里面,使用的话只需要安装依赖就可以了。但是你需要最新代码的话,还是要同步一下Github。


链接:https://pan.baidu.com/s/1VYvTxjR5yuaCIq9cUk8I4Q

提取码:TUAN  


相关文章
|
机器学习/深度学习 人工智能 编解码
阿里 DSW 试用心得——用 PAI-DSW 修复老照片
通过试用阿里 DSW 了解了命令行和 SD WebUI 两种方式进行老照片修复的相关知识
864 1
阿里 DSW 试用心得——用 PAI-DSW 修复老照片
|
4月前
|
机器学习/深度学习 运维 监控
智能化运维:机器学习在故障预测和自动化修复中的应用
随着信息技术的迅猛发展,企业对运维工作的效率和准确性要求越来越高。传统的运维模式已难以应对日益复杂的系统环境和数据量。本文将探讨如何利用机器学习技术提升运维工作的智能化水平,实现故障的早期预测和自动化修复,从而减少系统停机时间,提高企业运营效率。通过分析机器学习在运维领域的应用实例,揭示其在实际工作中的有效性和潜力。
74 0
|
5月前
|
机器学习/深度学习 缓存 运维
智能化运维:机器学习在故障预测与自动修复中的应用
随着信息技术的飞速发展,企业系统日益复杂,传统运维模式面临巨大挑战。智能化运维作为一种新兴趋势,通过集成机器学习算法,实现对系统故障的预测和自动修复,显著提高运维效率与准确性。本文深入探讨了智能化运维的概念、关键技术及其在故障预测和自动修复方面的应用实例,旨在为读者提供一种科学严谨、数据导向的视角,理解智能化运维的价值与实践路径。
165 0
|
5月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测与自动修复中的应用
随着技术的快速发展,智能化运维已成为提高系统稳定性和效率的关键。本文深入探讨了机器学习在故障预测和自动修复中的应用,分析了如何通过数据驱动的方法优化运维流程,并提出了实施智能化运维的策略。文章结合最新的研究成果和案例分析,为读者提供了一套完整的智能化运维解决方案。
195 0
|
机器学习/深度学习 人工智能 算法
【保姆级教程】用PAI-DSW修复亚运历史老照片
本教程整合了来自开源社区的高质量图像修复、去噪、上色等算法,并使用 Stable Diffusion WebUI 进行交互式图像修复。参与者可以根据需要进行参数调整,组合不同的处理方式以获得最佳修复效果。参与者还可以在活动页面上传修复后的成果图片,参与比赛,获胜者将有机会获得丰厚的奖品。
44378 189
【保姆级教程】用PAI-DSW修复亚运历史老照片
|
6月前
|
传感器
GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)
GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)
123 0
|
6月前
|
机器学习/深度学习 大数据 程序员
[机器学习]Jupyter Notebook 安装使用(二)
[机器学习]Jupyter Notebook 安装使用(二)
90 0
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
294 0
|
机器学习/深度学习 算法 对象存储
使用PAI-DSW修复亚运历史老照片
本次实验旨在通过使用PAI-DSW和Stable Diffusion WebUI,对一组旧照片进行修复和增强,以提升其清晰度、颜色和纹理。通过这一过程,我们期望能更好地理解和运用PAI-DSW和Stable Diffusion WebUI的强大功能,为图像修复领域提供新的可能性。
319 26
|
机器学习/深度学习 存储 人工智能
“用PAI-DSW修复亚运历史老照片”活动体验
通过参加“用PAI-DSW修复亚运历史老照片”活动,记录照片修复的过程。
626 24
下一篇
无影云桌面