一文读懂kafka消息拉取机制|线程拉取模型

简介: 一文读懂kafka消息拉取机制|线程拉取模型

在详细介绍Kafka拉取之前,我们再来回顾一下消息拉取的整体流程:

e021d262e9318b4f4b24c4e11dddfbac.png

在消费者加入到消费组后,消费者Leader会根据当前在线消费者个数与分区的数量进行队列负载,每一个消费者获得一部分分区,接下来就是要从Broker服务端将数据拉取下来,提交给消费端进行消费,对应流程中的pollForFetches方法。


要正确写出优秀的Kafka端消费代码,详细了解其拉取模型是非常重要的一步。


1、消息拉取详解


1.1 消费端拉取流程详解


消息拉取的实现入口为:KafkaConsumer的pollForFetches,接下来我们将详细剖析其流程,探讨kafka消息拉取模型,其实现如下所示:


3f80d284071f9290a7e266ff5331884d.png

整个消息拉取的核心步骤如下:


  • 获取本次拉取的超时时间,会取自用户设置的超时时间与一个心跳包的间隔之中的最小值。
  • 拉取缓存区中解析已异步拉取的消息。
  • 向Broker发送拉取请求,该请求是一个异步请求
  • 通过ConsumerNetworkClient触发底层NIO通信。
  • 再次尝试从缓存区中解析已拉起的消息。


1.1 Fetch的sendFetches详解


经过队列负载算法分配到部分分区后,消费者接下来需要向Broker发送消息拉起请求,具体由sendFetches方法实现。

2b93396af292bdac6b50cc9d0ff49de4.jpg

Step1:通过调用preparefetchRequest,构建请求对象,其实现的核心要点如下:


  • 构建一个请求列表,这里采用了Build设计模式,最终生成的请求对象:Node为Key,FetchSessionHandler.FetchRequestData为Value的请求,我觉得这里有必要看一下FetchRequestData的数据结构:

e275c54be223d3d9fd47c1e002c0ea19.png

  • 其中ParitionData汇总包含了本次消息拉取的开始位点。
  • 通过fetchablePartitions方法获取本次可拉取的队列,其核心实现要点如下:
  • 从队列负载结果中获取可拉取的分区信息,主要的判断标准:未被暂停与有正确位点信息
  • nextInLineRecords?
  • 去除掉拉取缓存区中的存在队列信息(completedFetches),即如果缓存区中的数据未被消费端消费则不会继续拉取新的内容
  • 获取待拉取分区所在的leader信息,如果未找到,本次拉取将忽略该分区,但是会设置需要更新topic路由信息,在下次拉取之前会从Broker拉取最新的路由信息。
  • 如果客户端与待拉取消息的broker节点有待发送的网络请求(见代码@4),则本次拉取任务将不会再发起新的拉取请求,待已有的请求处理完毕后才会拉取新的消息。
  • 拉取消息时需要指定拉取消息偏移量,来自队列负载算法时指定,主要消费组的最新消费位点。


c91cf9d6f24b5c164b5a72010b496a66.png

Step2:按Node依次构建请求节点,并通过client的send方法将请求异步发送,当收到请求结果后会调用对应的事件监听器,这里主要的是一次拉取最大的字节数50M。


值得注意的是在Kafka中调用client的send方法并不会真正触发网络请求,而是将请求放到发送缓冲区中,Client的poll方法才会真正触发底层网络请求。


Step3:当客户端收到服务端请求后会将原始结果放入到completedFetches中,等待客户端从中解析。


本篇文章暂时不关注服务端对fetch请求的处理,等到详细剖析了Kafka的存储相关细节后再回过来看Fetch请求的响应。


1.2 Fetcher的fetchedRecords方法详解


向服务端发送拉取请求异步返回后会将结果返回到一个completedFetches中,也可以理解为接收缓存区,接下来将从缓存区中将结果解析并返回给消费者消费。从接收缓存区中解析数据的具体实现见Fetcher的fetchedRecords方法。

a108d58f5d3703ce7986016b67b574e1.png

核心实现要点如下:


  • 首先说明一下nextInLineRecords的含义,接下来的fetchedRecords方法将从这里获取值,该参数主要是因为引入了maxPollRecords(默认为500),一次拉取的消息条数,一次Fetch操作一次每一个分区最多返回50M数据,可能包含的消息条数大于maxPollRecords。
    如果nextInLineRecords为空或者所有内容已被拉取,则从completedFetch中解析。
  • 从completedFetch中解析解析成nextInlineRecords。
  • 从nextInlineRecords中继续解析数据。


关于将CompletedFetch中解析成PartitionRecords以及从PartitionRecords提取数据成Map< TopicPartition, List< ConsumerRecord< K, V>>>的最终供应用程序消费的数据结构,代码实现非常简单,这里就不再介绍。


有关服务端响应SEND_FETCH的相关分析,将在详细分析Kafka存储相关机制时再介绍。在深入存储细节时,从消息拉取,消息写入为切入点是一个非常不错的选择。


2、消息消费端模型


阅读源码是手段而不是目的,通过阅读源码,我们应该总结提炼一下Kafka消息拉取模型(特点),以便更好的指导实践。


首先再强调一下消费端的三个重要参数:


  • fetch.max.bytes
    客户端单个Fetch请求一次拉取的最大字节数,默认为50M,根据上面的源码分析得知,Kafka会按Broker节点为维度进行拉取, 即按照队列负载算法分配在同一个Broker上的多个队列进行聚合,同时尽量保证各个分区的拉取平衡,通过max.partition.fetch.bytes参数设置。
  • max.partition.fetch.bytes
    一次fetch拉取单个队列最大拉取字节数量,默认为1M。
  • max.poll.records
    调用一次KafkaConsumer的poll方法,返回的消息条数,默认为500条。

实践思考:fetch.max.bytes默认是max.partition.fetch.bytes的50倍,也就是默认情况一下,一个消费者一个Node节点上至少需要分配到50个队列,才能尽量满额拉取。但50个分区(队列)可以来源于这个消费组订阅的所有的topic


2.1Kafka消费线程拉取线程模型


KafkaConsumer并不是线程安全的,即KafkaConsumer的所有方法调用必须在同一个线程中,但消息拉取却是是并发的,线程模型说明如下图所示:

62f42a13c2cbe08562302019f4489c5b.png

其核心设计理念是KafkaConsumer在调用poll方法时,如果本地缓存区中(completedFeches)存在未拉取的消息,则直接从本地缓存区中拉取消息,否则会调用client#send方法进行异步多线程并行发送拉取请求,发往不同的broker节点的请求是并发执行,执行完毕后,再将结果放入到poll方法所在线程中的缓存区,实现多个线程的协同


2.2 poll方法返回给消费端线程特点


pol l方法会从缓存区中依次获取一个CompletedFetch对象,一次只从CompletedFetch对象中获取500条消息,一个CompletedFetch对象包含一个分区的数据,默认最大的消息体大小为1M,可通过max.partition.fetch.bytes改变默认值。


如果一个分区中消息超过500条,则KafkaConsumer的poll方法将只会返回1个分区的数据,这样在顺序消费时基于单分区的顺序性保证时如果采取与RocketMQl类似的机制,对分区加锁,则其并发度非常低,因为此时顺序消费的并发度取决于这500条消息包含的分区个数


Kafka顺序消费最佳实践:单分区中消息可以并发执行,但要保证同一个key的消息必须串行执行。因为在实践应用场景中,通常只需要同一个业务实体的不同消息顺序执行。

好了,本文就介绍到这里了,一键三连(关注、点赞、留言)是对我最大的鼓励


掌握一到两门java主流中间件,是敲开BAT等大厂必备的技能,送给大家一个Java中间件学习路线,助力大家实现职场的蜕变。


相关文章
|
1月前
|
Java API 调度
线程的中断(interrupt)机制
线程的中断(interrupt)机制
30 1
|
2月前
|
Java
网络 I/O:单 Selector 多线程(单线程模型)
网络 I/O:单 Selector 多线程(单线程模型)
|
1月前
|
人工智能 JSON 前端开发
【Spring boot实战】Springboot+对话ai模型整体框架+高并发线程机制处理优化+提示词工程效果展示(按照框架自己修改可对接市面上百分之99的模型)
【Spring boot实战】Springboot+对话ai模型整体框架+高并发线程机制处理优化+提示词工程效果展示(按照框架自己修改可对接市面上百分之99的模型)
|
14天前
|
消息中间件 存储 算法
深入了解Kafka的数据持久化机制
深入了解Kafka的数据持久化机制
32 0
|
1月前
|
资源调度 算法 Linux
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
75 0
|
9天前
|
监控 Java 关系型数据库
JVM工作原理与实战(十三):打破双亲委派机制-线程上下文类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了打破双亲委派机制的方法、线程上下文类加载器等内容。
13 2
|
19天前
|
安全 Java 调度
深入理解Java中的线程安全与锁机制
【4月更文挑战第6天】 在并发编程领域,Java语言提供了强大的线程支持和同步机制来确保多线程环境下的数据一致性和线程安全性。本文将深入探讨Java中线程安全的概念、常见的线程安全问题以及如何使用不同的锁机制来解决这些问题。我们将从基本的synchronized关键字开始,到显式锁(如ReentrantLock),再到读写锁(ReadWriteLock)的讨论,并结合实例代码来展示它们在实际开发中的应用。通过本文,读者不仅能够理解线程安全的重要性,还能掌握如何有效地在Java中应用各种锁机制以保障程序的稳定运行。
|
1月前
|
Java
并发编程-线程等待唤醒机制
并发编程-线程等待唤醒机制
|
1月前
|
安全 Java 开发者
Java中的并发编程:探索线程安全与锁机制
【2月更文挑战第12天】 本文深入探讨Java并发编程的核心概念,特别是线程安全和锁机制。不同于传统的技术文章摘要,我们将通过一个实际案例来展开讨论,即如何在多线程环境下保证数据的一致性和完整性。我们将从基础的线程概念入手,逐步深入到synchronized关键字、显式锁(如ReentrantLock),以及其他并发工具类(如CountDownLatch、CyclicBarrier等)的应用。通过本文,读者不仅能够掌握Java并发编程的理论知识,还能了解到如何在实际开发中合理地应用这些并发机制,以提升应用程序的性能和稳定性。
19 2
|
1月前
|
安全 Java 程序员
Java中的并发编程:掌握同步机制与线程安全
【2月更文挑战第12天】 在现代软件开发领域,多线程和并发编程已成为提高应用性能和资源利用率的关键技术。Java语言提供了丰富的并发编程工具和框架,使得开发高效、可靠的并发应用成为可能。本文将深入探讨Java中的并发编程,着重介绍同步机制、线程安全概念及其在实际开发中的应用。通过对这些知识点的深入分析和案例演示,旨在帮助读者建立起对Java并发编程的全面理解,从而更好地设计和实现线程安全的高并发系统。

热门文章

最新文章