《Python Cookbook(第3版)中文版》——1.2 从任意长度的可迭代对象中分解元素

简介:

本节书摘来自异步社区《Python Cookbook(第3版)中文版》一书中的第1章,第1.2节,作者[美]David Beazley , Brian K.Jones,陈舸 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.2 从任意长度的可迭代对象中分解元素

1.2.1 问题

需要从某个可迭代对象中分解出N个元素,但是这个可迭代对象的长度可能超过N,这会导致出现“分解的值过多(too many values to unpack)”的异常。

1.2.2 解决方案

Python的“表达式”可以用来解决这个问题。例如,假设开设了一门课程,并决定在期末的作业成绩中去掉第一个和最后一个,只对中间剩下的成绩做平均分统计。如果只有4个成绩,也许可以简单地将4个都分解出来,但是如果有24个呢?表达式使这一切都变得简单:

def drop_first_last(grades):
    first, *middle, last = grades
    return avg(middle)
AI 代码解读

另一个用例是假设有一些用户记录,记录由姓名和电子邮件地址组成,后面跟着任意数量的电话号码。则可以像这样分解记录:

>>> record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212')
>>> name, email, *phone_numbers = user_record
>>> name
'Dave'
>>> email
'dave@example.com'
>>> phone_numbers
['773-555-1212', '847-555-1212']
>>>
AI 代码解读

不管需要分解出多少个电话号码(甚至没有电话号码),变量phone_numbers都一直是列表,而这是毫无意义的。如此一来,对于任何用到了变量phone_numbers的代码都不必对它可能不是一个列表的情况负责,或者额外做任何形式的类型检查。

由*修饰的变量也可以位于列表的第一个位置。例如,比方说用一系列的值来代表公司过去8个季度的销售额。如果想对最近一个季度的销售额同前7个季度的平均值做比较,可以这么做:

*trailing_qtrs, current_qtr = sales_record
trailing_avg = sum(trailing_qtrs) / len(trailing_qtrs)
return avg_comparison(trailing_avg, current_qtr)
AI 代码解读

从Python解释器的角度来看,这个操作是这样的:

>>> *trailing, current = [10, 8, 7, 1, 9, 5, 10, 3]
>>> trailing
[10, 8, 7, 1, 9, 5, 10]
>>> current
3
AI 代码解读

1.2.3 讨论

对于分解未知或任意长度的可迭代对象,这种扩展的分解操作可谓是量身定做的工具。通常,这类可迭代对象中会有一些已知的组件或模式(例如,元素1之后的所有内容都是电话号码),利用*表达式分解可迭代对象使得开发者能够轻松利用这些模式,而不必在可迭代对象中做复杂花哨的操作才能得到相关的元素。

*式的语法在迭代一个变长的元组序列时尤其有用。例如,假设有一个带标记的元组序列:

records = [
     ('foo', 1, 2),
      ('bar', 'hello'),
      ('foo', 3, 4),
]

def do_foo(x, y):
    print('foo', x, y)

def do_bar(s):
    print('bar', s)

for tag, *args in records:
    if tag == 'foo':
        do_foo(*args)
elif tag == 'bar':
        do_bar(*args)
AI 代码解读

当和某些特定的字符串处理操作相结合,比如做拆分(splitting)操作时,这种*式的语法所支持的分解操作也非常有用。例如:

>>> line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false'
>>> uname, *fields, homedir, sh = line.split(':')
>>> uname
'nobody'
>>> homedir
'/var/empty'
>>> sh
'/usr/bin/false'
>>>
AI 代码解读

有时候可能想分解出某些值然后丢弃它们。在分解的时候,不能只是指定一个单独的*,但是可以使用几个常用来表示待丢弃值的变量名,比如_或者ign(ignored)。例如:

>>> record = ('ACME', 50, 123.45, (12, 18, 2012))
>>> name, *_, (*_, year) = record
>>> name
'ACME'
>>> year
2012
>>>
AI 代码解读

*分解操作和各种函数式语言中的列表处理功能有着一定的相似性。例如,如果有一个列表,可以像下面这样轻松将其分解为头部和尾部:

>>> items = [1, 10, 7, 4, 5, 9]
>>> head, *tail = items
>>> head
1
>>> tail
[10, 7, 4, 5, 9]
>>>
AI 代码解读

在编写执行这类拆分功能的函数时,人们可以假设这是为了实现某种精巧的递归算法。例如:

>>> def sum(items):
...      head, *tail = items
...      return head + sum(tail) if tail else head
...
>>> sum(items)
36
>>>
AI 代码解读

但是请注意,递归真的不算是Python的强项,这是因为其内在的递归限制所致。因此,最后一个例子在实践中没太大的意义,只不过是一点学术上的好奇罢了。

目录
打赏
0
0
0
0
1819
分享
相关文章
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
131 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
6天前
|
解决Python报错:DataFrame对象没有concat属性的多种方法(解决方案汇总)
总的来说,解决“DataFrame对象没有concat属性”的错误的关键是理解concat函数应该如何正确使用,以及Pandas库提供了哪些其他的数据连接方法。希望这些方法能帮助你解决问题。记住,编程就像是解谜游戏,每一个错误都是一个谜题,解决它们需要耐心和细心。
46 15
Python中的“空”:对象的判断与比较
在Python开发中,判断对象是否为“空”是常见操作,但其中暗藏诸多细节与误区。本文系统梳理了Python中“空”的判定逻辑,涵盖None类型、空容器、零值及自定义对象的“假值”状态,并对比不同判定方法的适用场景与性能。通过解析常见误区(如混用`==`和`is`、误判合法值等)及进阶技巧(类型安全检查、自定义对象逻辑、抽象基类兼容性等),帮助开发者准确区分各类“空”值,避免逻辑错误,同时优化代码性能与健壮性。掌握这些内容,能让开发者更深刻理解Python的对象模型与业务语义交集,从而选择最适合的判定策略。
28 5
【负荷预测】基于变分模态分解(VMD-CNN-LSTM)的短期电力负荷预测【Python】
本项目实现了一种基于变分模态分解(VMD)的短期电力负荷预测模型——VMD-CNN-LSTM。通过VMD技术将原始电力负荷数据分解为多个平稳子序列,结合温度和时间等特征构建矩阵,输入CNN-LSTM模型训练,最终叠加重构得到预测结果。此方法有效应对非线性和非平稳性引起的误差,精度高且稳定性强。程序采用Python编写,注释清晰,运行稳定,并提供直观的可视化结果。附带部分代码及详细运行结果展示,下载链接已提供。
[oeasy]python083_类_对象_成员方法_method_函数_function_isinstance
本文介绍了Python中类、对象、成员方法及函数的概念。通过超市商品分类的例子,形象地解释了“类型”的概念,如整型(int)和字符串(str)是两种不同的数据类型。整型对象支持数字求和,字符串对象支持拼接。使用`isinstance`函数可以判断对象是否属于特定类型,例如判断变量是否为整型。此外,还探讨了面向对象编程(OOP)与面向过程编程的区别,并简要介绍了`type`和`help`函数的用法。最后总结指出,不同类型的对象有不同的运算和方法,如字符串有`find`和`index`方法,而整型没有。更多内容可参考文末提供的蓝桥、GitHub和Gitee链接。
41 11
Python如何显示对象的某个属性的所有值
本文介绍了如何在Python中使用`getattr`和`hasattr`函数来访问和检查对象的属性。通过这些工具,可以轻松遍历对象列表并提取特定属性的所有值,适用于数据处理和分析任务。示例包括获取对象列表中所有书籍的作者和检查动物对象的名称属性。
61 2
|
4月前
|
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
101 3
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
354 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
5月前
|
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
116 2
|
6月前
|
【10月更文挑战第18天】「Mac上学Python 29」基础篇10 - 循环结构与迭代控制
在Python中,循环结构是控制程序执行的重要工具。通过学习本篇内容,您将掌握如何使用for循环和while循环来高效地处理重复任务,并了解break、continue和else的使用方式。同时,我们还会探索嵌套循环和典型应用场景中的实际应用。
77 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等