女朋友携程三面被Redis难倒!回来给她讲了一晚上的缓存穿透、缓存击穿、缓存雪崩!

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 周末在家面试,和候选人聊到Redis的问题,于是问了他一个问题:你知道缓存穿透、缓存击穿和缓存雪崩吗?他们之间的区别是什么?分别怎么解决吗?
作者:漫话编程 来自:漫话编程

前言

周末在家面试,和候选人聊到Redis的问题,于是问了他一个问题:你知道缓存穿透、缓存击穿和缓存雪崩吗?他们之间的区别是什么?分别怎么解决吗?

面试结束后,女朋友好像有很多问号,于是来问我。

缓存穿透

要把这个问题讲清楚,先举个例子。

一个女孩子去门店买口红,到了门店之后被告知她想要的那个色号已经没有了。于是她要求店员去问总部还有没有货。总部发现这个色号也没有了,于是女孩子就离开了。

过了一会另一个女孩子又来了,也想要购买同一个色号,店员就又总部问了一次。如此反复。

女孩子买口红不仅需要门店帮忙查询,还需要总部也进行盘货。类似这种情况,在缓存领域有一个类似的概念叫做缓存穿透

缓存穿透是指缓存服务器中没有缓存数据,数据库中也没有符合条件的数据,导致业务系统每次都绕过缓存服务器查询下游的数据库,缓存服务器完全失去了其应用的作用。

缓存空值

解决多次询问总部的方法比较简单,如果口红门店在帮第一个女孩子查询之后,就记录下来这个色号已经没有了,下次其他女孩再来问这个色号的时候,直接告诉她没货了。

这样就可以避免每次都惊动总部了。

在缓存中,之所以会发生穿透,就是因为缓存没有对那些不存在的值得Key缓存下来,从而导致每次查询都要请求到数据库。

那么我们就可以为这些key对应的值设置为null并放到缓存中,这样再出现查询这个key 的请求的时候,直接返回null即可 。

但是还需要注意的就是需要有一个失效时间,因为如果不设置失效的话,如果哪天总部有货了,门店还是当做没货的话,就会影响销量了。

BloomFilter

很多时候,缓存穿透是因为有很多恶意流量的请求,这些请求可能随机生成很多Key来请求查询,这些肯定在缓存和数据库中都没有,那就很容易导致缓存穿透。

针对类似的情况,可以使用一个过滤器。

比如如果有一群人经常来门店问一些根本不存在的色号,比如五彩斑斓的黑,这些色号该品牌根本没生产过的话,店员就可以直接告诉顾客不存在就行了,也不需要惊动总部。

在缓存穿透防治上常用的技术是布隆过滤器(Bloom Filter)

布隆过滤器是一种比较巧妙的概率性数据结构,它可以告诉你数据一定不存在或可能存在,相比Map、Set、List等传统数据结构它占用内存少、结构更高效。

对于缓存穿透,我们可以将查询的数据条件都哈希到一个足够大的布隆过滤器中,用户发送的请求会先被布隆过滤器拦截,一定不存在的数据就直接拦截返回了,从而避免下一步对数据库的压力。

缓存击穿

有一种比较特殊的情况,那就是如果某一个热门色号的口红刚好卖完了,这时候有很多顾客同时来咨询要购买这个色号,那么门店内的多个售货员可能分别给总部打电话咨询是否有存货。

或者如果有多家门店同时卖完了,那么总部接收到的咨询量就会剧增。类似这种情况,在缓存领域有一个类似的概念叫做缓存击穿

缓存击穿是指当某一key的缓存过期时大并发量的请求同时访问此key,瞬间击穿缓存服务器直接访问数据库,让数据库处于负载的情况。

异步定时更新

如果提前知道某一个色号比较畅销的话,那就可以定时的咨询总部是否还有存货,定时的更新库存情况就可以避免上面这种情况了。

在缓存处理上,同理,比如某一个热点数据的过期时间是1小时,那么每59分钟,通过定时任务去更新这个热点key,并重新设置其过期时间。

互斥锁

还有一种解决办法,那就是如果很多顾客咨询的是同一个色号的口红,那么就先处理第一个用户的咨询,其他同样请求的顾客先排队等待。一直到店员从总部那里获取到最新的库存信息后,就可以安排其他人继续购买了。

在缓存处理上,通常使用一个互斥锁来解决缓存击穿的问题。简单来说就是当Redis中根据key获得的value值为空时,先锁上,然后从数据库加载,加载完毕,释放锁。若其他线程也在请求该key时,发现获取锁失败,则先阻塞。

缓存雪崩

如果门店内的多个色号的口红同时售罄了,并且门店在这个时间点刚好也不知道总部有没有库存了,这时候如果有大量顾客来到门店购物的话,就会有更多的咨询电话打到总部那里。

或者是门店突然出现问题了,不能提供服务了,很多顾客就可能自己打电话到总部咨询库存情况。类似这种情况,在缓存领域有一个类似的概念叫做缓存雪崩

缓存雪崩是指当大量缓存同时过期或缓存服务宕机,所有请求的都直接访问数据库,造成数据库高负载,影响性能,甚至数据库宕机。

不同的过期时间

为了避免缓存雪崩,门店可以考虑给不同的色号的口红预留不同的库存,并且采用不同的频率咨询总部库存情况,更新到门店中。这样就可以避免突然同一个时间点所有色号都售罄。

今日读者福利:关注公众号:麒麟改bug,即可领取一份阿里内部Java金三银四面试真题分享【附答案解析】

为了避免大量的缓存在同一时间过期,可以把不同的key过期时间设置成不同的, 并且通过定时刷新的方式更新过期时间。

集群

为了避免门店出问题导致大量顾客直接打电话到总部,可以考虑开更多的门店,将用户分流到多个店铺中。

类似的,在缓存雪崩问题防治上面,一个比较典型的技术就是采用集群方式部署,使用集群可以避免服务单点故障。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
8天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
9天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
17天前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
98 22
|
16天前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
106 7
|
21天前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
55 10
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
74 6
|
1月前
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
177 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
|
21天前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
48 5