女朋友携程三面被Redis难倒!回来给她讲了一晚上的缓存穿透、缓存击穿、缓存雪崩!

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 周末在家面试,和候选人聊到Redis的问题,于是问了他一个问题:你知道缓存穿透、缓存击穿和缓存雪崩吗?他们之间的区别是什么?分别怎么解决吗?
作者:漫话编程 来自:漫话编程

前言

周末在家面试,和候选人聊到Redis的问题,于是问了他一个问题:你知道缓存穿透、缓存击穿和缓存雪崩吗?他们之间的区别是什么?分别怎么解决吗?

面试结束后,女朋友好像有很多问号,于是来问我。

缓存穿透

要把这个问题讲清楚,先举个例子。

一个女孩子去门店买口红,到了门店之后被告知她想要的那个色号已经没有了。于是她要求店员去问总部还有没有货。总部发现这个色号也没有了,于是女孩子就离开了。

过了一会另一个女孩子又来了,也想要购买同一个色号,店员就又总部问了一次。如此反复。

女孩子买口红不仅需要门店帮忙查询,还需要总部也进行盘货。类似这种情况,在缓存领域有一个类似的概念叫做缓存穿透

缓存穿透是指缓存服务器中没有缓存数据,数据库中也没有符合条件的数据,导致业务系统每次都绕过缓存服务器查询下游的数据库,缓存服务器完全失去了其应用的作用。

缓存空值

解决多次询问总部的方法比较简单,如果口红门店在帮第一个女孩子查询之后,就记录下来这个色号已经没有了,下次其他女孩再来问这个色号的时候,直接告诉她没货了。

这样就可以避免每次都惊动总部了。

在缓存中,之所以会发生穿透,就是因为缓存没有对那些不存在的值得Key缓存下来,从而导致每次查询都要请求到数据库。

那么我们就可以为这些key对应的值设置为null并放到缓存中,这样再出现查询这个key 的请求的时候,直接返回null即可 。

但是还需要注意的就是需要有一个失效时间,因为如果不设置失效的话,如果哪天总部有货了,门店还是当做没货的话,就会影响销量了。

BloomFilter

很多时候,缓存穿透是因为有很多恶意流量的请求,这些请求可能随机生成很多Key来请求查询,这些肯定在缓存和数据库中都没有,那就很容易导致缓存穿透。

针对类似的情况,可以使用一个过滤器。

比如如果有一群人经常来门店问一些根本不存在的色号,比如五彩斑斓的黑,这些色号该品牌根本没生产过的话,店员就可以直接告诉顾客不存在就行了,也不需要惊动总部。

在缓存穿透防治上常用的技术是布隆过滤器(Bloom Filter)

布隆过滤器是一种比较巧妙的概率性数据结构,它可以告诉你数据一定不存在或可能存在,相比Map、Set、List等传统数据结构它占用内存少、结构更高效。

对于缓存穿透,我们可以将查询的数据条件都哈希到一个足够大的布隆过滤器中,用户发送的请求会先被布隆过滤器拦截,一定不存在的数据就直接拦截返回了,从而避免下一步对数据库的压力。

缓存击穿

有一种比较特殊的情况,那就是如果某一个热门色号的口红刚好卖完了,这时候有很多顾客同时来咨询要购买这个色号,那么门店内的多个售货员可能分别给总部打电话咨询是否有存货。

或者如果有多家门店同时卖完了,那么总部接收到的咨询量就会剧增。类似这种情况,在缓存领域有一个类似的概念叫做缓存击穿

缓存击穿是指当某一key的缓存过期时大并发量的请求同时访问此key,瞬间击穿缓存服务器直接访问数据库,让数据库处于负载的情况。

异步定时更新

如果提前知道某一个色号比较畅销的话,那就可以定时的咨询总部是否还有存货,定时的更新库存情况就可以避免上面这种情况了。

在缓存处理上,同理,比如某一个热点数据的过期时间是1小时,那么每59分钟,通过定时任务去更新这个热点key,并重新设置其过期时间。

互斥锁

还有一种解决办法,那就是如果很多顾客咨询的是同一个色号的口红,那么就先处理第一个用户的咨询,其他同样请求的顾客先排队等待。一直到店员从总部那里获取到最新的库存信息后,就可以安排其他人继续购买了。

在缓存处理上,通常使用一个互斥锁来解决缓存击穿的问题。简单来说就是当Redis中根据key获得的value值为空时,先锁上,然后从数据库加载,加载完毕,释放锁。若其他线程也在请求该key时,发现获取锁失败,则先阻塞。

缓存雪崩

如果门店内的多个色号的口红同时售罄了,并且门店在这个时间点刚好也不知道总部有没有库存了,这时候如果有大量顾客来到门店购物的话,就会有更多的咨询电话打到总部那里。

或者是门店突然出现问题了,不能提供服务了,很多顾客就可能自己打电话到总部咨询库存情况。类似这种情况,在缓存领域有一个类似的概念叫做缓存雪崩

缓存雪崩是指当大量缓存同时过期或缓存服务宕机,所有请求的都直接访问数据库,造成数据库高负载,影响性能,甚至数据库宕机。

不同的过期时间

为了避免缓存雪崩,门店可以考虑给不同的色号的口红预留不同的库存,并且采用不同的频率咨询总部库存情况,更新到门店中。这样就可以避免突然同一个时间点所有色号都售罄。

今日读者福利:关注公众号:麒麟改bug,即可领取一份阿里内部Java金三银四面试真题分享【附答案解析】

为了避免大量的缓存在同一时间过期,可以把不同的key过期时间设置成不同的, 并且通过定时刷新的方式更新过期时间。

集群

为了避免门店出问题导致大量顾客直接打电话到总部,可以考虑开更多的门店,将用户分流到多个店铺中。

类似的,在缓存雪崩问题防治上面,一个比较典型的技术就是采用集群方式部署,使用集群可以避免服务单点故障。

相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
1月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
189 1
Redis专题-实战篇二-商户查询缓存
|
1月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
6月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
951 0
|
6月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
238 32
|
6月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
169 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
8月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
565 16
Redis应用—8.相关的缓存框架
|
8月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
1780 29
下一篇
oss云网关配置