掌握这几个技巧,以后用MySQL查询总比别人快一步!

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 经常有同学问我,我的一个SQL语句使用了索引,为什么还是会进入到慢查询之中呢?今天我们就从这个问题开始来聊一聊索引和慢查询。

前言

经常有同学问我,我的一个SQL语句使用了索引,为什么还是会进入到慢查询之中呢?今天我们就从这个问题开始来聊一聊索引和慢查询。

案例剖析

为了实验,我创建了如下表:

该表有三个字段,其中用id是主键索引,a是普通索引。

首先SQL判断一个语句是不是慢查询语句,用的是语句的执行时间。他把语句执行时间跟long\_query\_time这个系统参数作比较,如果语句执行时间比它还大,就会把这个语句记录到慢查询日志里面,这个参数的默认值是10秒。当然在生产上,我们不会设置这么大,一般会设置1秒,对于一些比较敏感的业务,可能会设置一个比1秒还小的值。读者福利:整理好的MySQL实战笔记

语句执行过程中有没有用到表的索引,可以通过explain一个语句的输出结果来看KEY的值不是NULL。

我们看下 explain select * from t;的KEY结果是NULL

(图一)

explain select * from t where id=2;的KEY结果是PRIMARY,就是我们常说的使用了主键索引

(图二)

explain select a from t;的KEY结果是a,表示使用了a这个索引。

(图三)

虽然后两个查询的KEY都不是NULL,但是最后一个实际上扫描了整个索引树a。

假设这个表的数据量有100万行,图二的语句还是可以执行很快,但是图三就肯定很慢了。如果是更极端的情况,比如,这个数据库上CPU压力非常的高,那么可能第2个语句的执行时间也会超过long\_query\_time,会进入到慢查询日志里面。

所以我们可以得出一个结论:是否使用索引和是否进入慢查询之间并没有必然的联系。使用索引只是表示了一个SQL语句的执行过程,而是否进入到慢查询是由它的执行时间决定的,而这个执行时间,可能会受各种外部因素的影响。换句话来说,使用了索引你的语句可能依然会很慢。

全索引扫描的不足

那如果我们在更深层次的看这个问题,其实他还潜藏了一个问题需要澄清,就是什么叫做使用了索引。

我们都知道,InnoDB是索引组织表,所有的数据都是存储在索引树上面的。比如上面的表t,这个表包含了两个索引,一个主键索引和一个普通索引。在InnoDB里,数据是放在主键索引里的。如图所示:

可以看到数据都放在主键索引上,如果从逻辑上说,所有的InnoDB表上的查询,都至少用了一个索引,所以现在我问你一个问题,如果你执行select from t where id>0,你觉得这个语句有用上索引吗?

我们看上面这个语句的explain的输出结果显示的是PRIMARY。其实从数据上你是知道的,这个语句一定是做了全面扫描。但是优化器认为,这个语句的执行过程中,需要根据主键索引,定位到第1个满足ID>0的值,也算用到了索引。

所以即使explain的结果里写的KEY不是NULL,实际上也可能是全表扫描的,因此InnoDB里面只有一种情况叫做没有使用索引,那就是从主键索引的最左边的叶节点开始,向右扫描整个索引树。

也就是说,没有使用索引并不是一个准确的描述。

  1. 你可以用全表扫描来表示一个查询遍历了整个主键索引树
  2. 也可以用全索引扫描,来说明像select a from t;这样的查询,他扫描了整个普通索引树;
  3. 而select * from t where id=2这样的语句,才是我们平时说的使用了索引。他表示的意思是,我们使用了索引的快速搜索功能,并且有效的减少了扫描行数。

索引的过滤性要足够好

根据以上解剖,我们知道全索引扫描会让查询变慢,接下来就要来谈谈索引的过滤性。

假设你现在维护了一个表,这个表记录了中国14亿人的基本信息,现在要查出所有年龄在10~15岁之间的姓名和基本信息,那么你的语句会这么写,select * from t\_people where age between 10 and 15。

你一看这个语句一定要在age字段上开始建立索引了,否则就是个全面扫描,但是你会发现,在你建立索引以后,这个语句还是执行慢,因为满足这个条件的数据可能有超过1亿行。

我们来看看建立索引以后,这个表的组织结构图:

这个语句的执行流程是这样的:

  1. 从索引上用树搜索,取到第1个age等于10的记录,得到它的主键id的值,根据id的值去主键索引取整行的信息,作为结果集的一部分返回;
  2. 在索引age上向右扫描,取下一个id的值,到主键索引上取整行信息,作为结果集的一部分返回;
  3. 重复上面的步骤,直到碰到第1个age大于15的记录;

你看这个语句,虽然他用了索引,但是他扫描超过了1亿行。所以你现在知道了,当我们在讨论有没有使用索引的时候,其实我们关心的是扫描行数

对于一个大表,不止要有索引,索引的过滤性还要足够好

像刚才这个例子的age,它的过滤性就不够好,在设计表结构的时候,我们要让所有的过滤性足够好,也就是区分度足够高。

回表的代价

那么过滤性好了,是不是表示查询的扫描行数就一定少呢?

我们再来看一个例子:

如果你的执行语句是 select * from t\_people where name='张三' and age=8

t\_people表上有一个索引是姓名和年龄的联合索引,那这个联合索引的过滤性应该不错,可以在联合索引上快速找到第1个姓名是张三,并且年龄是8的小朋友,当然这样的小朋友应该不多,因此向右扫描的行数很少,查询效率就很高。

但是查询的过滤性和索引的过滤性可不一定是一样的,如果现在你的需求是查出所有名字的第1个字是张,并且年龄是8岁的所有小朋友,你的语句会怎么写呢?

你的语句要怎么写?很显然你会这么写:select * from t\_people where name like '张%' and age=8;

在MySQL5.5和之前的版本中,这个语句的执行流程是这样的:

  1. 首先从联合索引上找到第1个年龄字段是张开头的记录,取出主键id,然后到主键索引树上,根据id取出整行的值;
  2. 判断年龄字段是否等于8,如果是就作为结果集的一行返回,如果不是就丢弃。
  3. 在联合索引上向右遍历,并重复做回表和判断的逻辑,直到碰到联合索引树上名字的第1个字不是张的记录为止。

我们把根据id到主键索引上查找整行数据这个动作,称为回表。你可以看到这个执行过程里面,最耗费时间的步骤就是回表,假设全国名字第1个字是张的人有8000万,那么这个过程就要回表8000万次,在定位第一行记录的时候,只能使用索引和联合索引的最左前缀,最称为最左前缀原则。

你可以看到这个执行过程,它的回表次数特别多,性能不够好,有没有优化的方法呢?

在MySQL5.6版本,引入了index condition pushdown的优化。我们来看看这个优化的执行流程:

  1. 首先从联合索引树上,找到第1个年龄字段是张开头的记录,判断这个索引记录里面,年龄的值是不是8,如果是就回表,取出整行数据,作为结果集的一部分返回,如果不是就丢弃;
  2. 在联合索引树上,向右遍历,并判断年龄字段后,根据需要做回表,直到碰到联合索引树上名字的第1个字不是张的记录为止;

这个过程跟上面的差别,是在遍历联合索引的过程中,将年龄等于8的条件下推到所有遍历的过程中,减少了回表的次数,假设全国名字第1个字是张的人里面,有100万个是8岁的小朋友,那么这个查询过程中在联合索引里要遍历8000万次,而回表只需要100万次。

虚拟列

可以看到这个优化的效果还是很不错的,但是这个优化还是没有绕开最左前缀原则的限制,因此在联合索引你还是要扫描8000万行,那有没有更进一步的优化方法呢?

我们可以考虑把名字的第一个字和age来做一个联合索引。这里可以使用MySQL5.7引入的虚拟列来实现。对应的修改表结构的SQL语句:

alter table t\_people add name\_first varchar(2) generated (left(name,1)),add index(name\_first,age);

我们来看这个SQL语句的执行效果:

首先他在people上创建一个字段叫name\_first的虚拟列,然后给name\_first和age上创建一个联合索引,并且,让这个虚拟列的值总是等于name字段的前两个字节,虚拟列在插入数据的时候不能指定值,在更新的时候也不能主动修改,它的值会根据定义自动生成,在name字段修改的时候也会自动修改。

有了这个新的联合索引,我们在找名字的第1个字是张,并且年龄为8的小朋友的时候,这个SQL语句就可以这么写:select * from t\_people where name\_first='张' and age=8。

这样这个语句的执行过程,就只需要扫描联合索引的100万行,并回表100万次,这个优化的本质是我们创建了一个更紧凑的索引,来加速了查询的过程,读者福利:整理好的MySQL实战笔记

总结

本文给你介绍了索引的基本结构和一些查询优化的基本思路,你现在知道了,使用索引的语句也有可能是慢查询,我们的查询优化的过程,往往就是减少扫描行数的过程。

慢查询归纳起来大概有这么几种情况:

  1. 全表扫描
  2. 全索引扫描
  3. 索引过滤性不好
  4. 频繁回表的开销

思考

假设业务要求的就是要统计年龄在10-15岁的14亿人的数量,不能增加过滤因子,那该怎么办?(select * from t\_people where age between 10 and 15)

假设该统计必须是OLTP,实时展示统计数据,又该怎么解决?

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
存储 关系型数据库 MySQL
提高MySQL查询性能的方法有很多
提高MySQL查询性能的方法有很多
159 7
|
1月前
|
存储 关系型数据库 MySQL
提高MySQL的查询性能
提高MySQL的查询性能
69 4
|
12天前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
43 9
|
13天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
40 3
|
19天前
|
SQL NoSQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(5)作者——LJS[含MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页等详解步骤及常见报错问题所对应的解决方法]
MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页、INSERT INTO SELECT / FROM查询结合精例等详解步骤及常见报错问题所对应的解决方法
|
17天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
85 1
|
23天前
|
SQL Java 关系型数据库
java连接mysql查询数据(基础版,无框架)
【10月更文挑战第12天】该示例展示了如何使用Java通过JDBC连接MySQL数据库并查询数据。首先在项目中引入`mysql-connector-java`依赖,然后通过`JdbcUtil`类中的`main`方法实现数据库连接、执行SQL查询及结果处理,最后关闭相关资源。
|
20天前
|
SQL 关系型数据库 MySQL
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
39 1
|
18天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
20天前
|
SQL 关系型数据库 MySQL
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
30 0