一次K8s中的Pod解析外网域名错误的问题排查

本文涉及的产品
全局流量管理 GTM,标准版 1个月
日志服务 SLS,月写入数据量 50GB 1个月
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 一次K8s中的Pod解析外网域名错误的问题排查

1、故障现象


我们一个agent代理服务,发布到k8s集群之后,pod状态是Running,但是server一直无法收到心跳信号,因此到集群内部去排查日志,发现该服务日志中出现大量的连接某一个ip地址tcp timeout


640.png


2、故障排查过程


通过查看日志发现是大量的错误日志,连接某个ip地址产生i/o timeout,因此排查服务的业务逻辑,该服务只会去连接server端,在服务的环境变量里配置了server端的域名,怀疑是不是有可能server端挂掉,在本地和集群宿主机上调用server的地址,发现是可以通的,因此排除掉了server端本身的问题


因为server端连接地址在我本地和集群宿主机上是可以正常调用,因此怀疑服务pod到server端地址不通,进入到pod中进行测试,发现的确不能调用,使用ping域名也是可以通的,但是发现ping解析出来的ip地址并不是我们server端的外网ip地址;因此怀疑到了dns解析的问题上,使用nsloopup命令进行排除(通常服务都没有该命令需要手动安装apt-get install dnsutils,yum install bind-utils,或者使用kubectl-debug工具来共享容器排查),解析出来的发现很诡异的name,域名最后面带了一个HOST


640.png


进一步查看/etc/resolv.conf,发现搜索域中有一个HOST搜索域,因此解析域名会带上HOST


640.png


又测试了几个域名,只要最后带HOST,都会解析到一个ip地址上,上网一搜,才知道这个HOST是个顶级域名,还会泛解析到某个ip上


640.png

640.png


至此,导致本次故障的原因,已定位到,是由于pod中的搜索域中带了一个顶级域名HOST,产生的泛解析到了一个不是我们server端的地址上


3、故障原因分析


首先我们需要知道在k8s中的pod是如何进行服务之间域名调用,是如何解析的?


Kubernetes 中的域名解析分析


  • 集群内部域名解析


在 Kubernetes 中,比如服务 a 访问服务 b,对于同一个 Namespace下,可以直接在 pod 中,通过 curl b 来访问。对于跨 Namespace 的情况,服务名后边对应 Namespace即可。比如 curl b.devops。那么,使用者这里边会有几个问题:


①:服务名是什么?②:为什么同一个 Namespace 下,直接访问服务名即可?不同 Namespace 下,需要带上 Namespace 才行?③:为什么内部的域名可以做解析,原理是什么?


DNS 如何解析,依赖容器内 resolv 文件的配置


cat /etc/resolv.conf
nameserver 10.68.0.2
search devops.svc.cluster.local. svc.cluster.local. cluster.local.


这个文件中,配置的 DNS Server,一般就是 K8S 中,kubedns 的 Service 的 ClusterIP,这个IP是虚拟IP,无法ping,但可以访问。


root@other-8-67:~# kubectl get svc -n kube-system |grep dns
kube-dns                    ClusterIP   10.68.0.2       <none>        53/UDP,53/TCP,9153/TCP   106d


所以,所有域名的解析,其实都要经过 kubedns 的虚拟IP 10.68.0.2 进行解析,不论是 Kubernetes 内部域名还是外部的域名。Kubernetes 中,域名的全称,必须是 service-name.namespace.svc.cluster.local 这种模式,服务名,就是Kubernetes中 Service 的名称,所以,当我们执行下面的命令时:


curl b


必须得有一个 Service 名称为 b,这是前提。


在容器内,会根据 /etc/resolve.conf 进行解析流程。选择 nameserver 10.68.0.2 进行解析,然后,用字符串 “b”,依次带入 /etc/resolve.conf 中的 search 域,进行DNS查找,分别是:


// search 内容类似如下(不同的pod,第一个域会有所不同)
search devops.svc.cluster.local svc.cluster.local cluster.local


b.devops.svc.cluster.local -> b.svc.cluster.local -> b.cluster.local ,直到找到为止。


所以,我们执行 curl b,或者执行 curl b.devops,都可以完成DNS请求,这2个不同的操作,会分别进行不同的DNS


// curl b,可以一次性找到(b +devops.svc.cluster.local)
b.devops.svc.cluster.local
// curl b.devops,第一次找不到( b.devops + devops.svc.cluster.local)
b.devops.devops.svc.cluster.local
// 第二次查找( b.devops + svc.cluster.local),可以找到
b.devops.svc.cluster.local


因此curl b,要比 curl b.devops 效率高,因为 curl b.devops,多经过了一次 DNS 查询。


  • 集群外部域名解析


访问外部域名走 search 域吗,看情况,可以说,大部分情况要走 search 域。我们以请求 baidu.com 为例,通过抓包的方式,看一看在某个容器中访问 baidu.com,进行的DNS查找的过程,都产生了什么样的数据包。注意:我们要抓DNS容器的包,就得先进入到DNS容器的网络中(而不是发起DNS请求的那个容器)。


由于DNS容器往往不具备bash,所以无法通过 docker exec 的方式进入容器内抓包,我们采用其他的方式:


// 1、找到容器ID,并打印它的NS ID
docker inspect --format "{{.State.Pid}}"  16938de418ac
// 2、进入此容器的网络Namespace
nsenter -n -t  54438
// 3、抓DNS包
tcpdump -i eth0 udp dst port 53|grep baidu.com


在其他的容器中,进行 baidu.com 域名查找


nslookup  baidu.com 114.114.114.114


注意:nslookup命令的最后指定DNS服务容器的IP,是因为,如果不指定,且DNS服务的容器存在多个的话,那么DNS请求,可能会均分到所有DNS服务的容器上,我们如果只抓某单个DNS服务容器抓到的包,可能就不全了,指定IP后,DNS的请求,就必然只会打到单个的DNS容器。抓包的数据才完整。


可以看到类似如下结果:


11:46:26.843118 IP srv-device-manager-7595d6795c-8rq6n.60857 > kube-dns.kube-system.svc.cluster.local.domain: 19198+ A? baidu.com.devops.svc.cluster.local. (49)
11:46:26.843714 IP srv-device-manager-7595d6795c-8rq6n.35998 > kube-dns.kube-system.svc.cluster.local.domain: 53768+ AAAA? baidu.com.devops.svc.cluster.local. (49)
11:46:26.844260 IP srv-device-manager-7595d6795c-8rq6n.57939 > kube-dns.kube-system.svc.cluster.local.domain: 48864+ A? baidu.com.svc.cluster.local. (45)
11:46:26.844666 IP srv-device-manager-7595d6795c-8rq6n.35990 > kube-dns.kube-system.svc.cluster.local.domain: 43238+ AAAA? baidu.com.svc.cluster.local. (45)
11:46:26.845153 IP srv-device-manager-7595d6795c-8rq6n.58745 > kube-dns.kube-system.svc.cluster.local.domain: 59086+ A? baidu.com.cluster.local. (41)
11:46:26.845543 IP srv-device-manager-7595d6795c-8rq6n.32910 > kube-dns.kube-system.svc.cluster.local.domain: 30930+ AAAA? baidu.com.cluster.local. (41)
11:46:26.845907 IP srv-device-manager-7595d6795c-8rq6n.55367 > kube-dns.kube-system.svc.cluster.local.domain: 58903+ A? baidu.com. (27)
11:46:26.861714 IP srv-device-manager-7595d6795c-8rq6n.32900 > kube-dns.kube-system.svc.cluster.local.domain: 58394+ AAAA? baidu.com. (27)


我们可以看到,在真正解析 baidu.com 之前,经历了 baidu.com.devops.svc.cluster.local. -> baidu.com.svc.cluster.local. -> baidu.com.cluster.local. -> baidu.com.


这也就意味着有3次DNS请求,是浪费的无意义的请求。这是因为,在 Kubernetes 中,其实 /etc/resolv.conf 这个文件,并不止包含 nameserver 和 search 域,还包含了非常重要的一项:ndots。


/prometheus $ cat /etc/resolv.conf
nameserver 10.66.0.2
search monitor.svc.cluster.local. svc.cluster.local. cluster.local. 
options ndots:5


ndots:5,表示:如果查询的域名包含的点“.”,不到5个,那么进行DNS查找,将使用非完全限定名称(或者叫绝对域名),如果你查询的域名包含点数大于等于5,那么DNS查询,默认会使用绝对域名进行查询。举例来说:


如果我们请求的域名是,a.b.c.d.e,这个域名中有4个点,那么容器中进行DNS请求时,会使用非绝对域名进行查找,使用非绝对域名,会按照 /etc/resolv.conf 中的 search 域,走一遍追加匹配:


a.b.c.d.e.devops.svc.cluster.local. ->
a.b.c.d.e.svc.cluster.local. ->
a.b.c.d.e.cluster.local.


直到找到为止。如果走完了search域还找不到,则使用 a.b.c.d.e. ,作为绝对域名进行DNS查找。


我们通过抓包分析一个具体案例:域名中点数少于5个的情况:


// 对域名 a.b.c.d.com 进行DNS解析请求 
root@srv-xxx-7595d6795c-8rq6n:/go/bin# nslookup  a.b.c.d.com
Server:  10.68.0.2
Address: 10.68.0.2#53
** server can't find a.b.c.d.com: NXDOMAIN
// 抓包数据如下:
root@srv-device-manager-7595d6795c-8rq6n:/go/bin# tcpdump -i eth0 udp dst port 53  -c 20 |grep a.b.c.d.com
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
20 packets captured16:14:40.053575 IP srv-device-manager-7595d6795c-8rq6n.37359 > kube-dns.kube-system.svc.cluster.local.domain: 29842+ A? a.b.c.d.com.cluster.local. (43)
16:14:40.054083 IP srv-device-manager-7595d6795c-8rq6n.34813 > kube-dns.kube-system.svc.cluster.local.domain: 19104+ AAAA? a.b.c.d.com.cluster.local. (43)
25 packets received by filter16:14:40.054983 IP srv-device-manager-7595d6795c-8rq6n.37303 > kube-dns.kube-system.svc.cluster.local.domain: 53902+ A? a.b.c.d.com.devops.svc.cluster.local. (51)
16:14:40.055465 IP srv-device-manager-7595d6795c-8rq6n.40766 > kube-dns.kube-system.svc.cluster.local.domain: 34453+ AAAA? a.b.c.d.com.devops.svc.cluster.local. (51)
0 packets dropped by kernel
16:14:40.055946 IP srv-device-manager-7595d6795c-8rq6n.35443 > kube-dns.kube-system.svc.cluster.local.domain: 24829+ A? a.b.c.d.com.svc.cluster.local. (47)
16:14:40.057698 IP srv-device-manager-7595d6795c-8rq6n.44180 > kube-dns.kube-system.svc.cluster.local.domain: 23046+ AAAA? a.b.c.d.com.svc.cluster.local. (47)
16:14:40.058062 IP srv-device-manager-7595d6795c-8rq6n.56986 > kube-dns.kube-system.svc.cluster.local.domain: 42008+ A? a.b.c.d.com. (29)
16:14:40.075579 IP srv-device-manager-7595d6795c-8rq6n.55738 > kube-dns.kube-system.svc.cluster.local.domain: 32284+ AAAA? a.b.c.d.com. (29)
// 结论:
// 点数少于5个,先走search域,最后将其视为绝对域名进行查询


域名中点数>=5个的情况:


// 对域名 a.b.c.d.e.com 进行DNS解析请求 
root@srv-xxx-7595d6795c-8rq6n:/go/bin# nslookup  a.b.c.d.e.com
Server:  10.68.0.2
Address: 10.68.0.2#53
** server can't find a.b.c.d.e.com: NXDOMAIN
// 抓包数据如下:
root@srv-device-manager-7595d6795c-8rq6n:/go/bin# tcpdump -i eth0 udp dst port 53  -c 20 |grep a.b.c.d.e.com
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:32:39.624305 IP srv-device-manager-7595d6795c-8rq6n.56274 > kube-dns.kube-system.svc.cluster.local.domain: 43582+ A? a.b.c.d.e.com. (31)
20 packets captured16:32:39.805470 IP srv-device-manager-7595d6795c-8rq6n.56909 > kube-dns.kube-system.svc.cluster.local.domain: 27206+ AAAA? a.b.c.d.e.com. (31)
16:32:39.833203 IP srv-device-manager-7595d6795c-8rq6n.33370 > kube-dns.kube-system.svc.cluster.local.domain: 14881+ A? a.b.c.d.e.com.cluster.local. (45)
21 packets received by filter16:32:39.833779 IP srv-device-manager-7595d6795c-8rq6n.40814 > kube-dns.kube-system.svc.cluster.local.domain: 43047+ AAAA? a.b.c.d.e.com.cluster.local. (45)
16:32:39.834363 IP srv-device-manager-7595d6795c-8rq6n.53053 > kube-dns.kube-system.svc.cluster.local.domain: 17994+ A? a.b.c.d.e.com.iot.svc.cluster.local. (53)
0 packets dropped by kernel16:32:39.834740 IP srv-device-manager-7595d6795c-8rq6n.47803 > kube-dns.kube-system.svc.cluster.local.domain: 15951+ AAAA? a.b.c.d.e.com.iot.svc.cluster.local. (53)
16:32:39.835177 IP srv-device-manager-7595d6795c-8rq6n.60845 > kube-dns.kube-system.svc.cluster.local.domain: 38541+ A? a.b.c.d.e.com.svc.cluster.local. (49)
16:32:39.835611 IP srv-device-manager-7595d6795c-8rq6n.36086 > kube-dns.kube-system.svc.cluster.local.domain: 49809+ AAAA? a.b.c.d.e.com.svc.cluster.local. (49)
// 结论:
// 点数>=5个,直接视为绝对域名进行查找,只有当查询不到的时候,才继续走 search 域。


优化方式1:使用全限定域名


其实最直接,最有效的优化方式,就是使用 “fully qualified name”,简单来说,使用“完全限定域名”(也叫绝对域名),你访问的域名,必须要以 “.” 为后缀,这样就会避免走 search 域进行匹配,我们抓包再试一次:


nslookup  a.b.c.com.


在DNS服务容器上抓到的包如下


root@srv-device-manager-7595d6795c-8rq6n:/go/bin# tcpdump -i eth0 udp dst port 53  -c 20 |grep a.b.c.com.
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:39:31.771615 IP srv-device-manager-7595d6795c-8rq6n.50332 > kube-dns.kube-system.svc.cluster.local.domain: 50829+ A? a.b.c.com. (27)
20 packets captured16:39:31.793579 IP srv-device-manager-7595d6795c-8rq6n.51946 > kube-dns.kube-system.svc.cluster.local.domain: 25235+ AAAA? a.b.c.com. (27)


并没有多余的DNS请求


优化方式2:具体应用配置特定的 ndots


其实,往往我们还真不太好用这种绝对域名的方式,有谁请求baidu.com的时候,还写成 baidu.com. 呢?


在 Kubernetes 中,默认设置了 ndots 值为5,是因为,Kubernetes 认为,内部域名,最长为5,要保证内部域名的请求,优先走集群内部的DNS,而不是将内部域名的DNS解析请求,有打到外网的机会,Kubernetes 设置 ndots 为5是一个比较合理的行为。


如果你需要定制这个长度,最好是为自己的业务,单独配置 ndots 即可(deployment为例)。


...
    spec:
      containers:
      - env:
        - name: GOENV
          value: DEV
        image: xxx/devops/srv-inner-proxy
        imagePullPolicy: IfNotPresent
        lifecycle: {}
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /health
            port: 8000
            scheme: HTTP
          initialDelaySeconds: 5
          periodSeconds: 5
          successThreshold: 1
          timeoutSeconds: 1
        name: srv-inner-proxy
        ports:
        - containerPort: 80
          protocol: TCP
        - containerPort: 8000
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /health
            port: 8000
            scheme: HTTP
          initialDelaySeconds: 5
          periodSeconds: 5
          successThreshold: 1
          timeoutSeconds: 1
        resources: {}
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsConfig:
        options:
        - name: timeout
          value: "2"
        - name: ndots
          value: "2"
        - name: single-request-reopen
      dnsPolicy: ClusterFirst
      ...


在Kubernetes 中,有4种 DNS 策略


具体来说:


  • None

表示空的DNS设置


这种方式一般用于想要自定义 DNS 配置的场景,而且,往往需要和 dnsConfig 配合一起使用达到自定义 DNS 的目的。


  • Default

有人说 Default 的方式,是使用宿主机的方式,这种说法并不准确。


这种方式,其实是,让 kubelet 来决定使用何种 DNS 策略。而 kubelet 默认的方式,就是使用宿主机的 /etc/resolv.conf(可能这就是有人说使用宿主机的DNS策略的方式吧),但是,kubelet 是可以灵活来配置使用什么文件来进行DNS策略的,我们完全可以使用 kubelet 的参数:–resolv-conf=/etc/resolv.conf 来决定你的DNS解析文件地址。


  • ClusterFirst

这种方式,表示 POD 内的 DNS 使用集群中配置的 DNS 服务,简单来说,就是使用 Kubernetes 中 kubedns 或 coredns 服务进行域名解析。如果解析不成功,才会使用宿主机的 DNS 配置进行解析。


  • ClusterFirstWithHostNet

在某些场景下,我们的 POD 是用 HOST 模式启动的(HOST模式,是共享宿主机网络的),一旦用 HOST 模式,表示这个 POD 中的所有容器,都要使用宿主机的 /etc/resolv.conf 配置进行DNS查询,但如果你想使用了 HOST 模式,还继续使用 Kubernetes 的DNS服务,那就将 dnsPolicy 设置为 ClusterFirstWithHostNet。


这几种DNS策略,需要在Pod,或者Deployment、RC等资源中,设置 dnsPolicy 即可


4、结论


通过故障原因的分析,我们可以知道该故障比较好的解决办法,就是在deployment中去设置dnsPolicy,在不影响集群内服务直接调用的情况下,把ndots从默认的5修改成了2,使代理服务pod在访问server端域名的时候dns解析直接走绝对域名,这样就会避免走 search 域进行匹配,可以正确匹配到ip地址。通过此次故障也让我知其然知其所以然,在排查故障的过程中,需要去了解背后涉及到的知识点和根本原因。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3月前
|
域名解析 网络协议 安全
在Linux中,想在命令行下访问某个网站,并且该网站域名还没有解析,如何做?
在Linux中,想在命令行下访问某个网站,并且该网站域名还没有解析,如何做?
|
3月前
|
运维 Serverless 网络安全
函数计算产品使用问题之通过仓库导入应用时无法配置域名外网访问,该如何排查
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
3月前
|
网络协议 Linux Docker
在Linux中,如何指定dns服务器,来解析某个域名?
在Linux中,如何指定dns服务器,来解析某个域名?
|
14天前
|
域名解析 网络协议
非阿里云注册域名如何在云解析DNS设置解析?
非阿里云注册域名如何在云解析DNS设置解析?
|
14天前
|
域名解析 网络协议 CDN
阿里云服务器购买后如何解析域名,三步操作即可解析绑定
阿里云服务器购买后如何解析域名,三步操作即可解析绑定
|
14天前
|
域名解析 弹性计算
内网域?名解析记录是否会覆盖公网域名解析记录?
内网域?名解析记录是否会覆盖公网域名解析记录?
|
14天前
|
域名解析 缓存 网络协议
Windows系统云服务器自定义域名解析导致网站无法访问怎么解决?
Windows系统云服务器自定义域名解析导致网站无法访问怎么解决?
|
3月前
|
域名解析 监控 负载均衡
【域名解析DNS专栏】智能DNS解析:自动选择最快服务器的奥秘
在互联网中,智能DNS解析作为一项先进技术,根据用户的网络环境和服务器负载情况,自动挑选最优服务器进行域名解析,显著提升访问速度与体验。其工作原理包括实时监控服务器状态、分析数据以选择最佳路由。通过负载均衡算法、地理位置识别及实时性能测试等策略,确保用户能获得最快的响应。这项技术极大提高了互联网服务的稳定性和效率。
133 5
|
3月前
|
消息中间件 域名解析 网络协议
【Azure 应用服务】部署Kafka Trigger Function到Azure Function服务中,解决自定义域名解析难题
【Azure 应用服务】部署Kafka Trigger Function到Azure Function服务中,解决自定义域名解析难题
|
3月前
|
域名解析 缓存 负载均衡
在Linux中,自定义解析域名的时候,可以编辑哪个⽂件?是否可以⼀个ip对应多个域名?是否⼀个域名对应多个ip?
在Linux中,自定义解析域名的时候,可以编辑哪个⽂件?是否可以⼀个ip对应多个域名?是否⼀个域名对应多个ip?

推荐镜像

更多