小六六学大数据之 Hadoop(一)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 前言文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…种一棵树最好的时间是十年前,其次是现在

叨絮


上面我们讲了下zookeeper,其实只是一个铺垫,接下来,我们就要真正的开始我们的大数据的学习了。


大数据概念


大数据(big data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

主要解决,海量数据的存储和海量数据的分析计算问题。

大数据技术生态体系


当然,目前这个生态是越来越大了,但是它的本质还是在二个方面 计算 和 存储,我这边说生态介绍一下 开源生态 和阿里云的云生态吧

开源生态

网络异常,图片无法展示
|


  • Sqoop:sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql)间进行数据的传递,可以将一个关系型数据库(例如:MySQL ,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
  • Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
  • Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
  • 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
  • 高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
  • 支持通过Kafka服务器和消费机集群来分区消息。
  • 支持Hadoop并行数据加载。


  • Storm:Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
  • Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
  • Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。Oozie协调作业就是通过时间(频率)和有效数据触发当前的Oozie工作流程。
  • Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
  • Hive:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
  • Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库,当前Mahout支持主要的4个用例:推荐挖掘:搜集用户动作并以此给用户推荐可能喜欢的事物。聚集:收集文件并进行相关文件分组。分类:从现有的分类文档中学习,寻找文档中的相似特征,并为无标签的文档进行正确的归类。频繁项集挖掘:将一组项分组,并识别哪些个别项会经常一起出现。
  • ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。


阿里云MaxCompute

MaxCompute(大数据计算服务)是是一种快速、完全托管的TB/PB级数据仓库解决方案。MaxCompute主要用于实时性要求不高的、批量结构化数据的存储和计算。并可提供大数据分析建模服务。其特点如下:


  • 采用分布式架构高效处理海量数据
  • 基于表的数据存储
  • 于SQL的数据处理
  • 支持多用户协同分析数据,多种权限管理方式,具有灵活的数据访问控制策略
  • 兼容Hive

MaxCompute架构

MaxCompute功能


  • 数据存储

适用于TB以上规模的存储及计算需求,最大可达EB级别。数据分布式存储,多副本冗余,数据存储对外仅开放表的操作接口,不提供文件系统访问接口。表数据列式存储,默认高度压缩,后续将提供兼容ORC的Ali-ORC存储格式。 支持外表,将存储在OSS对象存储、OTS表格存储的数据映射为二维表。 支持Partition、Bucket的分区、分桶存储。 底层是盘古文件系统(不是HDFS)。 使用时,存储与计算解耦,不需要仅仅为了存储而扩大不必要的计算资源。


  • 数据通道

TUNNEL:提供高并发的离线数据上传下载服务。支持每天TB/PB级别的数据导入导出。适合于全量数据或历史数据的批量导入。

DataHub:针对实时数据上传的场景,具有延迟低、使用方便的特点,适用于增量数据的导入。Datahub还支持多种数据传输插件,包括Logstash、Flume、Fluentd、Sqoop等。同时支持日志服务Log Service中的日志数据的一键投递至MaxCompute,进而利用大数据开发套件进行日志分析和挖掘。


  • 多种计算模型

SQL:以二维表的形式存储数据,支持多种数据类型,MaxCompute以二维表的形式存储数据,对外提供了SQL查询功能。不支持事务、索引及Update/Delete等操作,SQL语法与Oracle,MySQL等有一定差别。无法在毫秒级别返回结果。

MapReduce:支持MapReduce java编程接口(提供优化增强的MaxCompute MapReduce,也提供高度兼容Hadoop的MapReduce版本)。不暴露文件系统,输入输出都是表。通过MaxCompute客户端工具、Dataworks提交作业。


Graph:是一套面向迭代的图计算处理框架。图计算作业使用图进行建模,图由点(Vertex)和边(Edge)组成,点和边包含权值(Value)。通过迭代对图进行编辑、演化,最终求解出结果,典型应用:PageRank、单源最短距离算法 、K-均值聚类算法等。

  • Spark

MaxCompute提供了Spark on MaxCompute的解决方案,在统一的计算资源和数据集权限体系之上,提供Spark计算框架,支持用户以熟悉的开发使用方式提交运行Spark作业


  • 交互式分析(Lightning)

MaxCompute产品的交互式查询服务。兼容PostgreSQL协议的JDBC/ODBC接口。支持主流BI及SQL客户端工具的连接访问,如Tableau、帆软BI、Navicat、SQL Workbench/J等。


Hadoop是什么


  • Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
  • 主要解决,海量数据的存储和海量数据的分析计算问题。
  • 广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈。


Hadoop的组成


网络异常,图片无法展示
|


HDFS架构概述

  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。


YARN架构概述

网络异常,图片无法展示
|


MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce

  • Map阶段并行处理输入数据
  • Reduce阶段对Map结果进行汇总

网络异常,图片无法展示
|


Hadoop分布式搭建


结尾


大致的介绍了一下Hadoop,下面我们就来一一详细的看看Hadoop的各个组件。。。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
204 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
91 2
|
15天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
51 4
|
30天前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
136 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
97 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
92 1
|
3月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
187 0
|
3月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
96 5