数据分析之AB testing实战(附Python代码)(一)

简介: 数据分析之AB testing实战(附Python代码)(一)

1、增长黑客

1)前言

 说到AB testing,就不得不说到增长黑客,这个词大约在2015年就引入到中国了,但是在2018年开始火热起来。那么互联网公司想要增加活跃用户、增加收入,现在的产品运营还是采用增长黑客这样一种运营方式,并不是产品经理一拍脑袋就可以想到,或者老板直接拍板决定就可以做到的。大家现在的玩儿法都是“数据驱动”,使用数据驱动方式来帮助运营更好的产品。那什么是“增长黑客”呢?通俗的说就是“树挪死,人挪活”,互联网公司想要成长,想要变成一个巨头,也需要挪一挪、变一变,不断变换自己的产品,升级自己的产品,否则将会在这样一个弱肉强食、竞争激烈的生态中,被干掉。我们有时候会觉得互联网公司就是【融资、烧钱、拉新、融资、烧钱、拉新…上市(倒闭)】这样一个流程,运气好的话就上市了,运气不好的话就倒闭了。但其实很多互联网公司内部,即使是烧钱,烧钱的方式也是有很多讲究的,并不是老板、产品经理或某个总监拍头决策的。



2)运用分析指标框架,驱动互联网产品和运营

 具体可以看看,增长黑客,怎么运用分析指标框架,驱动互联网产品和运营?现在分享一个链接,供大家了解:http://www.woshipm.com/data-analysis/439849.html

image.png

 整个互联网内部,无论是产品、营销、销售等,现在基本都是采用“数据驱动”这样一个方式来进行运作的,这也就是“数据分析行业”在最近几年为什么这么火热的原因。“增长黑客”很多人用AARRR去总结了一下,如上图所示,下面我们来对上图做一个文字说明。

 首选是“获取用户”(Acquisition),怎么样使用一种比较高效的方式(APP、网站、百度或淘宝买一些广告、)来获取到用户,增加用户数。接着是“增加活跃”(Activation),对于获取到的用户,怎么去激活他们,使得他们变得活跃。然后是“提高留存”(Retention),我好不容易通过各种渠道,将用户拉到我的产品中,怎么让他们成为我们这个产品的忠实用户。再接着就是“实现收益”(Revenue),公司运营需要生存,就必须要赚钱获取收益,那么怎么样获取更多的收益?是订阅更多的VIP用户,还是卖给用户更多的产品或者广告来获取收益?最后一个是“裂变传播”(Referral),如果我们前面的过程做的好的话,用户是不是会帮助我们做裂变传播,他们自己会口口相传(微信、朋友圈等),帮助我们做宣传,帮助我们拓展更多的用户。

 这样上述几个部分就形成了一个良好的闭环,不断地去良性的发展。


3)增长黑客大致分为如下几个步骤

image.png

 首先是“分析现状”,分析现在的产品有哪些问题?在哪方面可以提高?

 然后是“设置目标”,你想干什么?像爱奇艺、腾讯视频等,就是想增加VIP的数量;像淘宝的话,如何更多地增加广告收入;像抖音地话,如何增加日活,怎么样让用户每天不停地去刷抖音,这样我会有更多的广告,更多的活跃用户数,更多的收入。

 接着是“提出改进方案”,提出方案后,是不是你的方案就是最优的呢?其实并不是,这就是下面所说的需要进行“小规模测试”。

 再接着是“开始小规模测试”,拿出一部分测试用户,让他们去看是否满意,是不是反馈的比较好。怎么知道反馈的好不好呢?就是下面要说的采集分析。

 再接着是“采集分析”,对测试用户得到的数据进行数据分析,如果反馈效果好,就调整流量,不断扩大规模去测试。如果反馈效果不好,就停止或者是修改方案(回到前面的步骤),这是一个反复迭代的过程,这个过程也就是“AB testing”。

 “AB testing”就是来帮助我们,通过数据分析的方式,来优化增长黑客这样一个流程,使用数据驱动的方式,来帮助分析我们的产品,分析我们的用户反馈。


2、AB testing介绍

1)AB testing对比方案图示展示

图示一:天猫两个网页的改版

image.png

图示二:微信两个版本的改版

image.png

 产品经理改了一个新的版本,那它到底好不好呢?可不可以一拍脑袋说,觉得哪个好就用哪个呢?万一反馈不是很好,万一下降了活跃用户数量,减少了用户收入,其实对于大公司来说,都是巨大的损失,谁都承担不起。所以需要使用像AB testing这样数据分析的方式,去把这个风险降到最低。还有一个例子就是Facebook,他们有一个级别非常高的高管,推动他们的产品,觉得某个产品这么好、那么好,所有Facebook产品的发布和版本的迭代都需要使用AB testing,小范围用户测试的时候,如果发现用户反馈不好,变得不怎么活跃了,觉得非常难用了,即使这个高管再推动呢,也是不行的,必须使用数据说话,这个产品不好,就放弃这个版本,去研发下一个版本或者寻找另外的突破口。这个东西在国内的好多公司基本都是这么玩儿的,比如说上述微信1.0版本和微信2.0版本,也不是说随随便便拍拍脑袋就发给大家使用的,其实也是运用AB testing,很多时候让大家看到不同的页面,找到一部分小流量用户,帮助我们去测试,看看他们的反馈。


2)什么是反馈呢?

 上面很多次我们都提到了“用户反馈”,那么什么是“反馈”呢?其实就是这部分用户的使用时长呀,产生的收益呀,像百度这样的广告(他有没有点广告呀),像爱奇艺这样的付费网站(他有没有从一个普通用户变为一个VIP用户呀),这些指标等都可以验证你新的版本是不是好。


3)如何选取这样一批小流量用户呢?

 最重的就是随机性。我们不能仅仅选择深圳市的某个地方的一些用户,作为测试用户。我们也不能仅仅选择年龄在25-30这样的限定范围的一些用户,作为测试用户。应该是在你的用户中随机抽取比如说1%的用户,作为小流量用户去进行版本测试,看看他们的反馈。如果反馈好,我们考虑扩大流量用户,抽取2%、5%、10%、20%、50%甚至是100%。如果反馈不好,我们选择是终止此次实验,寻找新的突破口,还是选择改进自己的版本。


4)到底什么是AB testing?

 简单地说:确定两个元素或版本(A和B)哪个版本更好!

image.png


5)如何做AB testing?

① 在产品正式迭代发版之前,为同一个目标制定两个(或以上)方案;

提出想法,设定假设;

预估成本,设定优先级;

设计方案;

 日常中我们总在说AB testing,做的是两个版本的对比,其实也可以是ABCD testing,四个版本的对比,只不过实际中我们做得更多的就是AB testing。再有一个,就是预估成本,这个是很有必要的,如果你切了50%的流量(或者更大的流量),将你的新版本上线跑了一周,假如情况非常糟糕,对于大公司来说,可能损失几个亿,或者是几十个亿,因此再进行实验之前,一定要好好预算一下,你究竟可以承担多大的风险,最后在设定你的方案。


image.pngimage.pngimage.pngimage.pngimage.png

相关文章
|
4月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
526 7
|
4月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
4月前
|
测试技术 Python
Python装饰器:为你的代码施展“魔法”
Python装饰器:为你的代码施展“魔法”
298 100
|
4月前
|
开发者 Python
Python列表推导式:一行代码的艺术与力量
Python列表推导式:一行代码的艺术与力量
474 95
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
4月前
|
存储 分布式计算 测试技术
Python学习之旅:从基础到实战第三章
总体来说,第三章是Python学习路程中的一个重要里程碑,它不仅加深了对基础概念的理解,还引入了更多高级特性,为后续的深入学习和实际应用打下坚实的基础。通过这一章的学习,读者应该能够更好地理解Python编程的核心概念,并准备好应对更复杂的编程挑战。
155 12
|
4月前
|
存储 数据采集 监控
Python文件操作全攻略:从基础到高级实战
本文系统讲解Python文件操作核心技巧,涵盖基础读写、指针控制、异常处理及大文件分块处理等实战场景。结合日志分析、CSV清洗等案例,助你高效掌握文本与二进制文件处理,提升程序健壮性与开发效率。(238字)
433 1
|
4月前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
771 1
|
4月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
427 0
|
4月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
482 0

推荐镜像

更多