Java并发编程 - AQS 之 StampedLock

简介: Java并发编程 - AQS 之 StampedLock

前面介绍的ReadWriteLock可以解决多线程同时读,但只有一个线程能写的问题。

如果我们深入分析ReadWriteLock,会发现它有个潜在的问题:如果有线程正在读,写线程需要等待读线程释放锁后才能获取写锁,即读的过程中不允许写,这是一种悲观的读锁。

要进一步提升并发执行效率,Java 8引入了新的读写锁StampedLock

StampedLockReadWriteLock相比,改进之处在于:读的过程中也允许获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入,这种读锁是一种乐观锁。

乐观锁的意思就是乐观地估计读的过程中大概率不会有写入,因此被称为乐观锁。反过来,悲观锁则是读的过程中拒绝有写入,也就是写入必须等待。显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。

我们来看例子:


public class Point {
    private final StampedLock stampedLock = new StampedLock();
    private double x;
    private double y;
    public void move(double deltaX, double deltaY) {
        long stamp = stampedLock.writeLock(); // 获取写锁
        try {
            x += deltaX;
            y += deltaY;
        } finally {
            stampedLock.unlockWrite(stamp); // 释放写锁
        }
    }
    public double distanceFromOrigin() {
        long stamp = stampedLock.tryOptimisticRead(); // 获得一个乐观读锁
        // 注意下面两行代码不是原子操作
        // 假设x,y = (100,200)
        double currentX = x;
        // 此处已读取到x=100,但x,y可能被写线程修改为(300,400)
        double currentY = y;
        // 此处已读取到y,如果没有写入,读取是正确的(100,200)
        // 如果有写入,读取是错误的(100,400)
        if (!stampedLock.validate(stamp)) { // 检查乐观读锁后是否有其他写锁发生
            stamp = stampedLock.readLock(); // 获取一个悲观读锁
            try {
                currentX = x;
                currentY = y;
            } finally {
                stampedLock.unlockRead(stamp); // 释放悲观读锁
            }
        }
        return Math.sqrt(currentX * currentX + currentY * currentY);
    }
}

ReadWriteLock相比,写入的加锁是完全一样的,不同的是读取。注意到首先我们通过tryOptimisticRead()获取一个乐观读锁,并返回版本号。接着进行读取,读取完成后,我们通过validate()去验证版本号,如果在读取过程中没有写入,版本号不变,验证成功,我们就可以放心地继续后续操作。如果在读取过程中有写入,版本号会发生变化,验证将失败。在失败的时候,我们再通过获取悲观读锁再次读取。由于写入的概率不高,程序在绝大部分情况下可以通过乐观读锁获取数据,极少数情况下使用悲观读锁获取数据。

可见,StampedLock把读锁细分为乐观读和悲观读,能进一步提升并发效率。但这也是有代价的:一是代码更加复杂,二是StampedLock是不可重入锁,不能在一个线程中反复获取同一个锁。

StampedLock还提供了更复杂的将悲观读锁升级为写锁的功能,它主要使用在if-then-update的场景:即先读,如果读的数据满足条件,就返回,如果读的数据不满足条件,再尝试写。

小结

StampedLock提供了乐观读锁,可取代ReadWriteLock以进一步提升并发性能;

StampedLock是不可重入锁。

目录
相关文章
|
4天前
|
设计模式 安全 Java
Java编程中的单例模式:理解与实践
【10月更文挑战第31天】在Java的世界里,单例模式是一种优雅的解决方案,它确保一个类只有一个实例,并提供一个全局访问点。本文将深入探讨单例模式的实现方式、使用场景及其优缺点,同时提供代码示例以加深理解。无论你是Java新手还是有经验的开发者,掌握单例模式都将是你技能库中的宝贵财富。
12 2
|
1天前
|
安全 Java 编译器
JDK 10中的局部变量类型推断:Java编程的简化与革新
JDK 10引入的局部变量类型推断通过`var`关键字简化了代码编写,提高了可读性。编译器根据初始化表达式自动推断变量类型,减少了冗长的类型声明。虽然带来了诸多优点,但也有一些限制,如只能用于局部变量声明,并需立即初始化。这一特性使Java更接近动态类型语言,增强了灵活性和易用性。
78 53
|
1天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
15 1
|
4天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
5天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
30 4
|
5天前
|
消息中间件 供应链 Java
掌握Java多线程编程的艺术
【10月更文挑战第29天】 在当今软件开发领域,多线程编程已成为提升应用性能和响应速度的关键手段之一。本文旨在深入探讨Java多线程编程的核心技术、常见问题以及最佳实践,通过实际案例分析,帮助读者理解并掌握如何在Java应用中高效地使用多线程。不同于常规的技术总结,本文将结合作者多年的实践经验,以故事化的方式讲述多线程编程的魅力与挑战,旨在为读者提供一种全新的学习视角。
26 3
|
4天前
|
设计模式 安全 Java
Java编程中的单例模式深入解析
【10月更文挑战第31天】在编程世界中,设计模式就像是建筑中的蓝图,它们定义了解决常见问题的最佳实践。本文将通过浅显易懂的语言带你深入了解Java中广泛应用的单例模式,并展示如何实现它。
|
5天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
20 2
|
5月前
|
Java C++
关于《Java并发编程之线程池十八问》的补充内容
【6月更文挑战第6天】关于《Java并发编程之线程池十八问》的补充内容
49 5
|
2月前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。