elasticsearch压力测试工具之ESrally使用说明

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: elasticsearch压力测试工具之ESrally使用说明

ESrally介绍


esrally是elastic search官方用于对ES集群进行压力测试的工具,使用esrally可以为我们构建不同版本集群,构造不同的参数和数据来进行压力测试,并且可以对产生的压测结果进行比较,rally顾名思义是拉力赛的意思,esrally的一些名词也都与拉力赛有关。


github地址:https://github.com/elastic/rally


ESrally安装


环境要求


python3.8 pip3
jdk8
git 1.9+


python3.8安装


yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gcc make libffi-devel 
wget https://www.python.org/ftp/python/3.8.2/Python-3.8.2.tar.xz
tar -xvJf Python-3.8.2.tar.xz
mkdir /usr/local/python3
cd Python-3.8.2/
./configure --prefix=/usr/local/python3
make && make install
ln -s /usr/local/python3/bin/python3 /usr/local/bin/python3
ln -s /usr/local/python3/bin/pip3 /usr/local/bin/pip3


git 2.22安装


由于yum安装的git版本默认为1.8,因此我需要编译安装较新版本的git,如果已通过yum安装过git,可以使用yum remove git卸载


yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel gcc perl-ExtUtils-MakeMaker
cd /tmp
wget https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.22.0.tar.gz
tar xzf git-2.22.0.tar.gz
cd git-2.22.0
make prefix=/usr/local/git all
make prefix=/usr/local/git install
echo "export PATH=$PATH:/usr/local/git/bin" >> /etc/bashrc
source /etc/bashrc


👉jdk安装


rpm -ivh jdk-8u221-linux-x64.rpm


👉esrally安装


python3 -m pip install esrally
vim /etc/profile
JAVA_HOME=/usr/java/jdk1.8.0_221-amd64/jre
export PATH=$PATH:/usr/local/python3/bin/:/usr/local/git/bin JAVA_HOME
source /etc/profile


👉配置ESrally


用于定义一些数据的配置,可以选择把结果存储到已有的ES中进行分析


esrally configure


配置完成后,将会覆写ESrally的配置文件/root/.rally/rally.ini


640.png


👉ESrally名词解释


👉track


赛道的意思,用于构建不同的数据和策略进行压测,track.json定义压测的数据集,以geonames/track.json为例


{% import "rally.helpers" as rally with context %}
{
  "version": 2,
  "description": "POIs from Geonames",
  "data-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames",
  "indices": [
    {
      "name": "geonames",
      "body": "index.json"
    }
  ],
  "corpora": [
    {
      "name": "geonames",
      "base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames",
      "documents": [
        {
          "source-file": "documents-2.json.bz2",
          "document-count": 11396503,
          "compressed-bytes": 265208777,
          "uncompressed-bytes": 3547613828
        }
      ]
    }
  ],
  "operations": [
    {{ rally.collect(parts="operations/*.json") }}
  ],
  "challenges": [
    {{ rally.collect(parts="challenges/*.json") }}
  ]
}


当我们开始用esrally开始比赛的时候,会先根据base-url和source-files构建链接从亚马逊下载数据,下载测试数据的速度很慢,我们可以提前下好离线数据来进行测试,测试数据存放在/home/elk/.rally/benchmarks/data/geonames目录下,indices定义了索引名和索引的具体设置,通过index.json文件可以查看


{
  "settings": {
    "index.number_of_shards": {{number_of_shards | default(5)}},
    "index.number_of_replicas": {{number_of_replicas | default(0)}},
    "index.store.type": "{{store_type | default('fs')}}",
    "index.requests.cache.enable": false
  },
  "mappings": {
    "dynamic": "strict",
    "_source": {
      "enabled": {{ source_enabled | default(true) | tojson }}
    },
    "properties": {
      "elevation": {
        "type": "integer"
      },
      "name": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "geonameid": {
        "type": "long"
      },
      "feature_class": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "location": {
        "type": "geo_point"
      },
      "cc2": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "timezone": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "dem": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "country_code": {
        "type": "text",
        "fielddata": true,
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "admin1_code": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "admin2_code": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "admin3_code": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "admin4_code": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "feature_code": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "alternatenames": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "asciiname": {
        "type": "text",
        "fields": {
          "raw": {
            "type": "keyword"
          }
        }
      },
      "population": {
        "type": "long"
      }
    }
  }
}


operations目录下定义了压测的具体操作,包括索引的写入、更新、段合并、各种查询,每个操作都可以构建不同的参数,


{
      "name": "index-append",
      "operation-type": "bulk",
      "bulk-size": {{bulk_size | default(5000)}},
      "ingest-percentage": {{ingest_percentage | default(100)}}
    },
    {
      "name": "index-update",
      "operation-type": "bulk",
      "bulk-size": {{bulk_size | default(5000)}},
      "ingest-percentage": {{ingest_percentage | default(100)}},
      "conflicts": "{{conflicts | default('random')}}",
      "on-conflict": "{{on_conflict | default('index')}}",
      "conflict-probability": {{conflict_probability | default(25)}},
      "recency": {{recency | default(0)}}
    },
    {
      "name": "default",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        }
      }
    },
    {
      "name": "term",
      "operation-type": "search",
      "body": {
        "query": {
          "term": {
            "country_code.raw": "AT"
          }
        }
      }
    },
    {
      "name": "phrase",
      "operation-type": "search",
      "body": {
        "query": {
          "match_phrase": {
            "name": "Sankt Georgen"
          }
        }
      }
    },
    {
      "name": "country_agg_uncached",
      "operation-type": "search",
      "body": {
        "size": 0,
        "aggs": {
          "country_population": {
            "terms": {
              "field": "country_code.raw"
            },
            "aggs": {
              "sum_population": {
                "sum": {
                  "field": "population"
                }
              }
            }
          }
        }
      }
    },
    {
      "name": "country_agg_cached",
      "operation-type": "search",
      "cache": true,
      "body": {
        "size": 0,
        "aggs": {
          "country_population": {
            "terms": {
              "field": "country_code.raw"
            },
            "aggs": {
              "sum_population": {
                "sum": {
                  "field": "population"
                }
              }
            }
          }
        }
      }
    },
    {
      "name": "scroll",
      "operation-type": "search",
      "pages": 25,
      "results-per-page": 1000,
      "body": {
        "query": {
          "match_all": {}
        }
      }
    },
    {
      "name": "expression",
      "operation-type": "search",
      "body": {
        "query": {
          "function_score": {
            "query": {
              "match_all": {}
            },
            "functions": [
              {
                "script_score": {
                  "script": {
                    "source": "abs(ln(abs(doc['population']) + 1) + doc['location'].lon + doc['location'].lat) * _score",
                    "lang": "expression"
                  }
                }
              }
            ]
          }
        }
      }
    },
    {
      "name": "painless_dynamic",
      "operation-type": "search",
      "body": {
        "query": {
          "function_score": {
            "query": {
              "match_all": {}
            },
            "functions": [
              {
                "script_score": {
                  "script": {
                    "source": "Math.abs(Math.log(Math.abs(doc['population'].value) + 1) + doc['location'].lon * doc['location'].lat)/_score",
                    "lang": "painless"
                  }
                }
              }
            ]
          }
        }
      }
    },
    {
      "name": "decay_geo_gauss_function_score",
      "operation-type": "search",
      "body": {
        "query": {
          "function_score": {
            "query": {
              "match_all": {}
            },  
            "gauss": {
              "location": {
                "origin": "52.37, 4.8951",
                "scale": "500km",
                "offset": "0km",
                "decay" : 0.1
              }
            }     
          }
        }
      }
    },
   {
      "name": "decay_geo_gauss_script_score",
      "operation-type": "search",
      "body": {
        "query": {
          "script_score": {
            "query": {
              "match_all": {}
            },
            "script": {
              "source": "decayGeoGauss(params.origin, params.scale, params.offset, params.decay, doc['location'].value)",
              "params": {
                 "origin": "52.37, 4.8951",
                  "scale": "500km",
                  "offset": "0km",
                  "decay" : 0.1 
              }
            }
          }
        }
      }
    },
    {
      "name": "random_script_score",
      "operation-type": "search",
      "body": {
        "query": {
          "script_score": {
            "query": {
              "match_all": {}
            },
            "script": {
              "source": "randomScore(100, '_seq_no')"
            }
          }
        }
      }
    },     
    {
      "name": "large_terms",
      "operation-type": "search",
      "param-source": "pure-terms-query-source"
    },
    {
      "name": "desc_sort_population",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"population" : "desc"}
        ]
      }
    },
    {
      "name": "asc_sort_population",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"population" : "asc"}
        ]
      }
    },
    {
      "name": "desc_sort_geonameid",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"geonameid" : "desc"}
        ]
      }
    },
    {
      "name": "asc_sort_geonameid",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"geonameid" : "asc"}
        ]
      }
    }

challenge指定了压测时执行的task,不同的track包含一个或多个challenge,"name": "append-no-conflicts"表示默认的challenge为append-no-conflicts,执行esrally list tracks可以查看不同track支持的challenge,default为true时,为默认执行的challenge,schedule定义了执行的任务列表

{
      "name": "append-no-conflicts",
      "description": "Indexes the whole document corpus using Elasticsearch default settings. We only adjust the number of replicas as we benchmark a single node cluster and Rally will only start the benchmark if the cluster turns green. Document ids are unique so all index operations are append only. After that a couple of queries are run.",
      "default": true,
      "schedule": [
        {
          "operation": "delete-index"
        },
        {
          "operation": {
            "operation-type": "create-index",
            "settings": {{index_settings | default({}) | tojson}}
          }
        },
        {
          "name": "check-cluster-health",
          "operation": {
            "operation-type": "cluster-health",
            "index": "geonames",
            "request-params": {
              "wait_for_status": "{{cluster_health | default('green')}}",
              "wait_for_no_relocating_shards": "true"
            }
          }
        },
        {
          "operation": "index-append",
          "warmup-time-period": 120,
          "clients": {{bulk_indexing_clients | default(8)}}
        },
        {
          "name": "refresh-after-index",
          "operation": "refresh"
        },
        {
          "operation": {
            "operation-type": "force-merge",
            "request-timeout": 7200
          }
        },
        {
          "name": "refresh-after-force-merge",
          "operation": "refresh"
        },
        {
          "name": "wait-until-merges-finish",
          "operation": {
            "operation-type": "index-stats",
            "index": "_all",
            "condition": {
              "path": "_all.total.merges.current",
              "expected-value": 0
            },
            "retry-until-success": true,
            "include-in-reporting": false
          }
        },
        {
          "operation": "index-stats",
          "warmup-iterations": 500,
          "iterations": 1000,
          "target-throughput": 90
        },
        {
          "operation": "node-stats",
          "warmup-iterations": 100,
          "iterations": 1000,
          "target-throughput": 90
        },
        {
          "operation": "default",
          "warmup-iterations": 500,
          "iterations": 1000,
          "target-throughput": 50
        },
        {
          "operation": "term",
          "warmup-iterations": 500,
          "iterations": 1000,
          "target-throughput": 150
        },
        {
          "operation": "country_agg_uncached",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 3.6
        },
        {
          "operation": "country_agg_cached",
          "warmup-iterations": 1000,
          "iterations": 1000,
          "target-throughput": 100
        },
        {
          "operation": "scroll",
          "warmup-iterations": 200,
          "iterations": 100,
          "#COMMENT": "Throughput is considered per request. So we issue one scroll request per second which will retrieve 25 pages",
          "target-throughput": 0.8
        },
        {
          "operation": "expression",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 2
        },
        {
          "operation": "painless_static",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.5
        },
        {
          "operation": "painless_dynamic",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.5
        },
        {
          "operation": "decay_geo_gauss_function_score",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1
        },
        {
          "operation": "decay_geo_gauss_script_score",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1
        },
        {
          "operation": "field_value_function_score",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.5
        },
        {
          "operation": "field_value_script_score",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.5
        },
        {
          "operation": "random_function_score",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.5
        },
        {
          "operation": "large_filtered_terms",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.1
        },
        {
          "operation": "large_prohibited_terms",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 1.1
        },
        {
          "operation": "desc_sort_geonameid",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 6
        },
        {
          "operation": "asc_sort_geonameid",
          "warmup-iterations": 200,
          "iterations": 100,
          "target-throughput": 6
        }
      ]
    },
    {
      "name": "append-fast-with-conflicts",
      "description": "Indexes the whole document corpus using a setup that will lead to a larger indexing throughput than the default settings. Rally will produce duplicate ids in 25% of all documents (not configurable) so we can simulate a scenario with appends most of the time and some updates in between.",
      "schedule": [
        {
          "operation": "delete-index"
        },
        {
          "operation": {
            "operation-type": "create-index",
            "settings": {%- if index_settings is defined %} {{index_settings | tojson}} {%- else %} {
              "index.refresh_interval": "30s",
              "index.number_of_shards": {{number_of_shards | default(6)}},
              "index.translog.flush_threshold_size": "4g"
            }{%- endif %}
          }
        },
        {
          "name": "check-cluster-health",
          "operation": {
            "operation-type": "cluster-health",
            "index": "geonames",
            "request-params": {
              "wait_for_status": "{{cluster_health | default('green')}}",
              "wait_for_no_relocating_shards": "true"
            }
          }
        },
        {
          "operation": "index-update",
          "warmup-time-period": 45,
          "clients": {{bulk_indexing_clients | default(8)}}
        },
        {
          "operation": {
            "operation-type": "force-merge",
            "request-timeout": 7200
          }
        },
        {
          "name": "wait-until-merges-finish",
          "operation": {
            "operation-type": "index-stats",
            "index": "_all",
            "condition": {
              "path": "_all.total.merges.current",
              "expected-value": 0
            },
            "retry-until-success": true,
            "include-in-reporting": false
          }
        }
      ]
    }


👉car


用于定义不同配置的ES实例,我们可以定义堆内存大小,垃圾回收器,既然是赛车,那就可以改装,我们可以自定义不同配置的car,执行命令esrally list car可查看所有的赛车,配置在/home/elk/.rally/benchmarks/teams/default/cars/v1目录下


640.png


👉race


表示某一次的压测,并且可以指定赛道和赛车配置,不指定则使用默认配置,race结果存储在/home/elk/.rally/benchmarks/races目录下,执行命令esrally list races可查看以往比赛结果


640.png


并且可以对不同的race进行比较


esrally compare --baseline=d1be27e5-c459-4a40-ab7b-f3576cda7144 --contender=694f5c89-2ed1-4a82-8524-98a8e59778d4


640.png


👉pipeline


就是定义以何种方式来构建这个集群,通过esrally list pipelines可查看所有的pipeline


640.png


  • from-sources-complete :表示从源代码构建ES, --revision参数可以指定一个ES的修订版本,默认为最新版本、
  • from-sources-skip-build :表示如果之前已经通过源码构建过一次相同版本的ES了,那么本次将不再进行构建,这样可以节省测试的时间
  • from-distribution:esrally将下载正式的ES发行版来进行测试, --distribution-version 参数可以指定ES版本,最低支持1.7.5
  • benchmark-only :将对已有的ES集群进行压测,--target-hosts参数可以指定ES集群地址


ESrally压测实例


👉测试5.4.3、6.4.3与7.8.1版本之间的写入性能差异


使用非root用户运行,并且保证内存够用,这里我是用geonames赛道进行测试,使用默认的car为1gb堆内存,为了快速测试,可以将测试数据和ES二进制包提前下到指定的目录下,ES二进制包存储在/home/elk/.rally/benchmarks/distributions目录下,测试数据存放在/home/elk/.rally/benchmarks/data/geonames目录下


esrally race --distribution-version=5.4.3 --track=geonames  --user-tag="version:5.4.3" --include-tasks="type:bulk"
esrally race --distribution-version=6.4.3 --track=geonames  --user-tag="version:6.4.3" --include-tasks="type:bulk"
esrally race --distribution-version=7.8.1 --track=geonames  --user-tag="version:7.8.1"  --include-tasks="type:bulk"


压测过程可以通过/home/elk/.rally/logs.log查看


af5213a75f6d770364a6c5ac952db341.png


👉对压测结果进行比较


比较7.8.1与5.4.3的写入差异


esrally compare --baseline=27265e6e-566a-4a47-a0d9-1fd2f8830041 --contender=66086ef0-5834-4743-a870-fd9c0bb41688


e1d6edf5c3e7a65e1e331dc1deb7133b.png


可以看到5.4版本的写入性能差别还是很大的


d3f1a911e77ddf11f09aa5e9c4f484b2.png


再看一下6.4.3与7.8.1的差异,写入性能差别不是很大


esrally compare --baseline=27265e6e-566a-4a47-a0d9-1fd2f8830041 --contender=b02fb6fe-824f-48ee-beb5-ab2ca2ad4bbc


117225080f76a78d4483a870b9f708ad.png


👉测试x86_64平台与arm平台的性能差异


👉环境


阿里云2v4g  志强Platinum 8269CY CPU 2.50GHz  x86_64

华为云2v4g  鲲鹏920  CPU 2.6GHz    arm平台

两台云主机的ES配置均相同,2G堆内存,系统参数相同


开始测试


还是要提前下好测试数据,这个测试周日跑了一天,结果截图没保存,可能配置太低了,结果差别不是很大,而且不是在同一台机器上跑的,没法使用esrally compare进行比较


esrally race --pipeline=benchmark-only --target-hosts=172.16.0.95:9200 --track=http_logs --offline
esrally race --pipeline=benchmark-only --target-hosts=172.26.214.32:9200 --track=http_logs --offline


👉中间遇到的问题


开始压测之后,报不能进入比赛,pid文件不可用


7428c147e1f67052134145ffc00ef14c.png


之后查看了相关race的日志,发现内存不够用了,因为之前已经跑了一个ES实例了,导致了我内存不足,把之前的ES实例关掉即可解决


bc8da67d044e7dec6e9bc61531a89b89.png


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
20天前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
186 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
27天前
|
Java 测试技术 API
自动化测试工具集成及实践
自动化测试用例的覆盖度及关键点最佳实践、自动化测试工具、集成方法、自动化脚本编写等(兼容多语言(Java、Python、Go、C++、C#等)、多框架(Spring、React、Vue等))
73 6
|
2月前
|
前端开发 Java jenkins
Jmeter压力测试工具全面教程和使用技巧。
JMeter是一个能够模拟高并发请求以检查应用程序各方面性能的工具,包括但不限于前端页面、后端服务及数据库系统。熟练使用JMeter不仅能够帮助发现性能瓶颈,还能在软件开发早期就预测系统在面对真实用户压力时的表现,确保软件质量和用户体验。在上述介绍的基础上,建议读者结合官方文档和社区最佳实践,持续深入学习和应用。
548 10
|
2月前
|
监控 Java 数据挖掘
利用Jmeter工具进行HTTP接口的性能测试操作
基础上述步骤反复迭代调整直至满足预期目标达成满意水平结束本轮压力评估周期进入常态监控阶段持续关注系统运转状态及时发现处理新出现问题保障服务稳定高效运作
322 0
|
3月前
|
敏捷开发 运维 数据可视化
DevOps看板工具中的协作功能:如何打破开发、测试与运维之间的沟通壁垒
在DevOps实践中,看板工具通过可视化任务管理和自动化流程,提升开发与运维团队的协作效率。它支持敏捷开发、持续交付,助力团队高效应对需求变化,实现跨职能协作与流程优化。
|
4月前
|
数据可视化 测试技术 Go
Go 语言测试与调试:`go test` 工具用法
`go test` 是 Go 语言内置的测试工具,支持单元测试、基准测试、示例测试等功能。本文详解其常用参数、调试技巧及性能测试命令,并提供实际项目中的应用示例与最佳实践。
|
3月前
|
人工智能 数据可视化 测试技术
UAT测试排程工具深度解析:让验收测试不再失控,项目稳稳上线
在系统交付节奏加快的背景下,“测试节奏混乱”已成为项目延期的主因之一。UAT测试排程工具应运而生,帮助团队结构化拆解任务、清晰分配责任、实时掌控进度,打通需求、测试、开发三方协作闭环,提升测试效率与质量。本文还盘点了2025年热门UAT工具,助力团队选型落地,告别靠表格和群聊推进测试的低效方式,实现有节奏、有章法的测试管理。
|
Web App开发 测试技术 API
自动化测试工具Selenium的深度解析
【5月更文挑战第27天】本文旨在深入剖析自动化测试工具Selenium,探讨其架构、原理及应用。通过对其核心组件、运行机制及在实际项目中的应用案例进行详细解读,以期为软件测试人员提供全面、深入的理解与实践指导。
|
JSON 数据管理 测试技术
自动化测试工具Selenium Grid的深度应用分析深入理解操作系统的内存管理
【5月更文挑战第28天】随着互联网技术的飞速发展,软件测试工作日益复杂化,传统的手工测试已无法满足快速迭代的需求。自动化测试工具Selenium Grid因其分布式执行特性而受到广泛关注。本文旨在深入剖析Selenium Grid的工作原理、配置方法及其在复杂测试场景中的应用优势,为测试工程师提供高效测试解决方案的参考。
|
敏捷开发 监控 IDE
深入理解自动化测试工具Selenium的工作原理与实践应用
【5月更文挑战第26天】 随着敏捷开发和持续集成理念的普及,自动化测试在软件开发生命周期中扮演了至关重要的角色。Selenium作为最流行的自动化测试工具之一,以其开源、跨平台和支持多种编程语言的特性被广泛使用。本文将详细解析Selenium的核心组件,探讨其工作原理,并通过案例分析展示如何高效地实施Selenium进行Web应用的自动化测试。我们将从测试准备到结果分析的全过程,提供一系列实用的策略和最佳实践,帮助读者构建和维护一个健壮的自动化测试环境。