spark on k8s 基础镜像的构建
背景
这是跑spark on k8s任务的基础镜像,用来指明executor pod的基础镜像
构建步骤
git clone spark特定的版本(加入是3.0.1版本),克隆完后,执行一下命令进行构建,构建出包含kubernetes模块的可运行包:
## spark 3.x兼容hadoop cdh版本,处理冲突 git cherry-pick 8e8afb3a3468aa743d13e23e10e77e94b772b2ed ./dev/make-distribution.sh --name 2.6.0-cdh5.13.1 --pip --tgz -Phive -Phive-thriftserver -Pmesos -Pyarn -Pkubernetes -Dhadoop.version=2.6.0-cdh5.13.1 -DskipTests
安装并加入必要的jar包
按照lzoCodec,安装native-lzo library(用来支持lzo),
把包含libhadoop.so的目录下的文件复制到assembly/target/scala-2.12/jars/hadoop_native
把包含libgplcompression.so的目录下的文件复制到assembly/target/scala-2.12/jars/native
把hadoop-lzo-0.4.15-cdh5.13.1.jar复制到assembly/target/scala-2.12/jars
配置环境变量
ENV SPARK_DIST_CLASSPATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native ENV LD_LIBRARY_PATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native ENV JAVA_LIBRARY_PATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native
修改镜像代码为
# distribution, the docker build command should be invoked from the top level directory # of the Spark distribution. E.g.: # docker build -t spark:latest -f kubernetes/dockerfiles/spark/Dockerfile . RUN set -ex && \ sed -i 's/http:\/\/deb.\(.*\)/https:\/\/deb.\1/g' /etc/apt/sources.list && \ apt-get update && \ ln -s /lib /lib64 && \ apt install -y bash tini libc6 libpam-modules krb5-user libnss3 && \ apt-get install liblzo2-dev -y && \ mkdir -p /opt/spark && \ mkdir -p /opt/spark/examples && \ mkdir -p /opt/spark/work-dir && \ touch /opt/spark/RELEASE && \ rm /bin/sh && \ ln -sv /bin/bash /bin/sh && \ echo "auth required pam_wheel.so use_uid" >> /etc/pam.d/su && \ chgrp root /etc/passwd && chmod ug+rw /etc/passwd && \ rm -rf /var/cache/apt/* COPY jars /opt/spark/jars COPY bin /opt/spark/bin COPY sbin /opt/spark/sbin COPY kubernetes/dockerfiles/spark/entrypoint.sh /opt/ COPY examples /opt/spark/examples COPY kubernetes/tests /opt/spark/tests COPY data /opt/spark/data ENV SPARK_HOME /opt/spark ENV SPARK_DIST_CLASSPATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native ENV LD_LIBRARY_PATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native ENV JAVA_LIBRARY_PATH=$SPARK_HOME/jars/native:$SPARK_HOME/jars/hadoop_native RUN ln -s $SPARK_HOME/jars/hadoop-lzo-0.4.15-cdh5.13.1.jar $SPARK_HOME/jars/hadoop-lzo.jar WORKDIR /opt/spark/work-dir RUN chmod g+w /opt/spark/work-dir ENTRYPOINT [ "/opt/entrypoint.sh" ]
构建包含k8s的镜像,执行如下命令:
./bin/docker-image-tool.sh -t spark-on-k8s-v3.0.1-cdh-2.6.0-5.13.1 build ## 按需进行修改镜像标签 docker tag spark:spark-on-k8s-v3.0.1-cdh-2.6.0-5.13.1 xxx.xxx.xxx/xxx/spark-on-k8s:v3.0.1-cdh-2.6.0-5.13.1
任务镜像的构建
背景
这是用来跑spark on k8s任务的driver端的镜像
构建步骤
- 按照任务要求进行镜像增加
注意对于spark on k8s client 在dockerfile中需配置
ENV HADOOP_CONF_DIR=/opt/hadoop/conf RUN echo '\nexport SPARK_LOCAL_HOSTNAME=${POD_IP}' >> /path/to/spark/conf/spark-env.sh
这样在driver通行的过程中就不会出现executor连接不上driver端的情况,原因是因为driver端以pod的名字作为host,而exeuctor直接访问该host是访问不了的,具体参考spark on k8s 与spark on k8s operator的对比
配置spark-default.conf
在/path/to/spark/conf/spark-default.conf配置:
spark.kubernetes.namespace dev spark.kubernetes.authenticate.driver.serviceAccountName lijiahong spark.kubernetes.authenticate.serviceAccountName lijiahong ## 注意这里是之前构建的spark-on-k8s的基础镜像,如果是以cluster形式运行,则driver和executor的镜像分开配置 ## spark.kubernetes.driver.container.image ## spark.kubernetes.executor.container.image spark.kubernetes.container.image xxx.xxx.xxx./xxx/spark-on-k8s:v3.0.1-cdh-2.6.0-5.13.1 spark.kubernetes.container.image.pullSecrets regsecret spark.kubernetes.file.upload.path hdfs://tmp spark.kubernetes.container.image.pullPolicy Always
构建镜像
docker build -f Dockerfile --pull -t "xxx/xxx/spark-on-k8s:xxx" .
提交任务的时候设置POD_IP
如以下yaml文件:
apiVersion: v1 kind: Pod metadata: name: spark-on-k8s-demo labels: name: spark-on-k8s-demo spec: containers: - name: spark-on-k8s-demo image: xxx/xxx/spark-on-k8s:xxx imagePullPolicy: Always env: - name: POD_IP valueFrom: fieldRef: fieldPath: status.podIP - name: NODE_IP valueFrom: fieldRef: fieldPath: status.hostIP imagePullSecrets: - name: regsecret restartPolicy: Never