【mlflow系列3】mlflow 升级(upgrade)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【mlflow系列3】mlflow 升级(upgrade)

背景


mlflow 的更新迭代速度还是很快的,平均一个月一个大版本的更新,截止到11月1号,已经更新到了1.11.0版本

我们查看mlflow release,就能看到早在1.10.0版本,就提供了对model registry的更好的feature支持,以及能够对实验进行逻辑删除操作,

而这些features 在mlflow 1.4.0是没有的,特别是删除实验的特性,如果实验很多的情况下,我们看到的实验是杂乱无章的,很不方便我们进行管理,所以我们进行mlflow的升级


升级以及准备


参照之前mlflow的搭建使用 ,我们先建立mlflow 1.4.0 和mlflow 1.11.0的conda环境

假设你已经建立好了对应的conda环境,且分别为mlflow-1.4.0 和mlflow-1.11.0 则执行:

conda activate mlflow-1.11.0

参考mlflow db upgrade ,执行

mlflow db upgrade mysql://user:passwd@host:port/db
如:mlflow db upgrade mysql://root:root@localhost/mlflow

其中

image.png

如果执行成功则会看到如下输出信息:

2020/11/02 10:24:50 INFO mlflow.store.db.utils: Updating database tables
INFO  [alembic.runtime.migration] Context impl MySQLImpl.
INFO  [alembic.runtime.migration] Will assume non-transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade 2b4d017a5e9b -> cfd24bdc0731, Update run status constraint with killed
INFO  [alembic.runtime.migration] Running upgrade cfd24bdc0731 -> 0a8213491aaa, drop_duplicate_killed_constraint
WARNI [0a8213491aaa_drop_duplicate_killed_constraint_py] Failed to drop check constraint. Dropping check constraints may not be supported by your SQL database. Exception content: (MySQLdb._exceptions.ProgrammingError) (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CHECK status' at line 1")
[SQL: ALTER TABLE runs DROP CHECK status]
(Background on this error at: http://sqlalche.me/e/f405)
INFO  [alembic.runtime.migration] Running upgrade 0a8213491aaa -> 728d730b5ebd, add registered model tags table
INFO  [alembic.runtime.migration] Running upgrade 728d730b5ebd -> 27a6a02d2cf1, add model version tags table
INFO  [alembic.runtime.migration] Running upgrade 27a6a02d2cf1 -> 84291f40a231, add run_link to model_version

如果此时再在mlflow 1.4.0的环境下 再执行:

mlflow server \
      --backend-store-uri mysql://root:root@localhost/mlflow \
      --host 0.0.0.0 -p 5002 \
      --default-artifact-root s3://mlflow

就会报错:

2020/11/02 10:25:41 ERROR mlflow.cli: Error initializing backend store
2020/11/02 10:25:41 ERROR mlflow.cli: Detected out-of-date database schema (found version 84291f40a231, but expected 2b4d017a5e9b). Take a backup of your database, then run 'mlflow db upgrade <database_uri>' to migrate your database to the latest schema. NOTE: schema migration may result in database downtime - please consult your database's documentation for more detail.
Traceback (most recent call last):
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/cli.py", line 263, in server
    initialize_backend_stores(backend_store_uri, default_artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 97, in initialize_backend_stores
    _get_tracking_store(backend_store_uri, default_artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 83, in _get_tracking_store
    _tracking_store = _tracking_store_registry.get_store(store_uri, artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/tracking/_tracking_service/registry.py", line 37, in get_store
    return builder(store_uri=store_uri, artifact_uri=artifact_uri)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 54, in _get_sqlalchemy_store
    return SqlAlchemyStore(store_uri, artifact_uri)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/store/tracking/sqlalchemy_store.py", line 99, in __init__
    mlflow.store.db.utils._verify_schema(self.engine)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/store/db/utils.py", line 52, in _verify_schema
    "more detail." % (current_rev, head_revision))
mlflow.exceptions.MlflowException: Detected out-of-date database schema (found version 84291f40a231, but expected 2b4d017a5e9b). Take a backup of your database, then run 'mlflow db upgrade <database_uri>' to migrate your database to the latest schema. NOTE: schema migration may result in database downtime - please consult your database's documentation for more detail.

这说明升级成功

此时再在mlflow 1.11.0的conda环境下执行:

 mlflow server \
      --backend-store-uri mysql://root:root@localhost/mlflow \
      --host 0.0.0.0 -p 5003 \
      --default-artifact-root s3://mlflow

就能正常的看到页面,这样mlflow 从1.4.0到1.11.0的升级就完成了

注意事项


如果是线上操作,则先备份数据库,因为该升级不一定能保证升级成功,如升级失败,直接从备份数据库恢复或者参照失败处理进行处理

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
9
分享
相关文章
利用 Jupyter 实现自动化报告生成 展示如何结合 Jupyter 和 Python 库
【8月更文第29天】为了创建自动化报告,我们可以利用 Jupyter Notebook 结合 Python 的强大库如 Pandas、Matplotlib 和 Seaborn 来处理数据、制作图表,并使用 Jinja2 模板引擎来生成 HTML 报告。这种方式非常适合需要定期生成相同类型报告的情况,比如数据分析、业务报表等。
457 1
【Tensorflow】解决Tensorboard: ValueError: Duplicate plugins for name projector
解决TensorBoard版本冲突的方法,即通过卸载冲突的TensorFlow相关包然后重新安装所需的版本。
272 1
听GPT 讲Alertmanager源代码--cluster/cli/asset等
听GPT 讲Alertmanager源代码--cluster/cli/asset等
106 0
【漏洞复现-jupyter_notebook-命令执行】vulfocus/jupyter_notebook-cve_2019_9644
【漏洞复现-jupyter_notebook-命令执行】vulfocus/jupyter_notebook-cve_2019_9644
376 0
【漏洞复现-jupyter_notebook-命令执行】vulfocus/jupyter_notebook-cve_2019_9644
【ML】机器学习模型之PMML--配置Java环境
标题的名字起的有点大,其实就是给自己的电脑配置Java环境
【ML】机器学习模型之PMML--配置Java环境
快速入门DVC(二):安装及ML项目初始化
安装 使用pip安装 我们强烈建议您创建一个虚拟环境,或者使用pipx(在 Python 3.7+ 上)来封装您的本地环境。