Python零基础快速入门系列(1)人工智能序章:开发环境搭建Anaconda+VsCode+JupyterNotebook(零基础启动)

简介: 本文将采用Anaconda+VsCode+JupyterNotebook的方案,环境安装完毕后,将拥有Python运行环境、常见的Python库例如python三剑客:Numpy、matplotlib、pandas、机器学习库sklearn全都有了。

这是机器未来的第5篇文章

写在前面:

  • 博客简介:专注AIoT领域,追逐未来时代的脉搏,记录路途中的技术成长!
  • 专栏简介:本专栏的核心就是:快!快!快!2周快速拿下Python,具备项目开发能力,为机器学习和深度学习做准备。
  • 面向人群:零基础编程爱好者
  • 专栏计划:接下来会逐步发布跨入人工智能的系列博文,敬请期待
  • Python零基础快速入门系列
  • 快速入门Python数据科学系列
  • 人工智能开发环境搭建系列
  • 机器学习系列
  • 物体检测快速入门系列
  • 自动驾驶物体检测系列
  • ......

@toc


1. 概述

目前主流的Python开发IDE主要有PyCharm、JupterNotebook,VsCode等,以前主流时PyCharm,随着VsCode插件的丰富,目前VsCode已经成为主流的顶流了。

本文将采用Anaconda+VsCode+JupyterNotebook的方案,环境安装完毕后,将拥有Python运行环境、常见的Python库例如python三剑客:Numpy、matplotlib、pandas、机器学习库sklearn全都有了。


2. 安装Anaconda

2.1 概述

Anaconda,中文大蟒蛇,是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。其简化了python软件包的安装,并且自动关联依赖,自动下载依赖的软件包,避免不必要的冲突,另外,anaconda最重要的功能就是创建虚拟环境,实现各种项目开发框架及版本的隔离。


2.2 下载anaconda

Anaconda的官方下载速度较慢,推荐使用清华大学的源下载,尽量选择日期较新的版本,根据操作系统版本选择对应的版本。


2.3 安装Anaconda

注意事项:不要有中文路径,安装过程无脑下一步即可。 安装完毕之后,python、pip等软件均已安装完毕。


2.4 测试Anaconda

在命令提示符输入conda -V查看conda版本,以确认conda环境是否生效。

PS C:\Users\zhoushimin> conda -V
conda 4.10.3


2.5 配置Anaconda

由于Anaconda官方服务器在国外,安装python软件包时下载速度巨慢,因此需要配置国内安装源,在这里使用清华大学的第三方源。

  • 首先找到配置文件【.condarc】,其在C盘用户目录下,如图:在这里插入图片描述如果不存在,则直接创建即可。
  • 打开文件后,将以下内容拷贝到文件中
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  • 清除索引缓存 在命令行执行命令
conda clean -i
  • 建立虚拟环境测试下载速度
conda create -n myenv numpy
测试时会发现下载包的速度杠杠的,测试完毕后,删除myenv虚拟环境
conda remove -n myenv --all
  • 恢复官方安装源 如果使用第三方源出现问题,可以恢复官方安装源重试,恢复指令如下:
conda config --remove-key channels


3. 配置pip国内安装源

使用pip安装软件包时,有些安装包下载速度特别慢,可以选择国内的安装源。


3.1 安装源列表

以下安装源可以选择:

# 清华大学 
https://pypi.tuna.tsinghua.edu.cn/simple/
# 阿里云 
http://mirrors.aliyun.com/pypi/simple/
# 中国科技大学 
https://pypi.mirrors.ustc.edu.cn/simple


3.2 安装源的使用方式

  • 临时使用 以安装tensorflow使用阿里云安装源为例,在-i后面指定安装源即可
pip install tensorflow_gpu==2.3 -i http://mirrors.aliyun.com/pypi/simple/
  • 永久使用 做如下配置后,无需再使用-i选项
pip install pip -U #升级 pip 到最新的版本后进行配置:
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
  • 恢复官方安装源 如果安装源出现异常,恢复官方安装源的方式如下:
pip config unset global.index-url`


3. 安装VsCode

3.1 VsCode安装

  • 下载地址:https://code.visualstudio.com/
  • 安装过程 略

3.2 VsCode中文支持

启动VsCode后,点击左侧的扩展功能栏,输入chinese,选择【简体中文】语言包安装重启即可转换为中文。在这里插入图片描述


3.3 VsCode设置之文件修改自动保存

开启了这个配置后,对文件的修改为自动保存,再也不会因为没有保存导致心血浪费了。在这里插入图片描述


3.4 VsCode设置之自动补全

输入editor.tabCompletion开启自动补全在这里插入图片描述


3.5 python插件的安装

点击VsCode左侧扩展工具栏,输入Python,选择第一个结果,然后在右侧点击安装即可。在这里插入图片描述


3.6 jupter插件的安装

在这里插入图片描述


4. 验证安装环境

  • 测试python版本 启动命令提示符,输入python查看python版本,从下图中可知python版本为3.7.0在这里插入图片描述
  • 测试Vscode中运行jupter notebook 在目录下创建demo.ipynb文件,ipynb后缀为jupter notebook文件的后缀,在右侧的代码输入框内输入
import numpy as np
    print(np.__version__)
查询numpy的版本,如果正确输出版本号,则说明环境搭建成功,从下图可知,numpy的版本号为1.21.2

在这里插入图片描述


5. jupyter中常用的快捷键有哪些?

Ctrl + Enter :运行代码

Shift + Enter:运行代码,光标定位到下一行

Tab : 代码补全

Shift + Tab / ? / ?? :查看文档

Esc:命令模式

Enter:编辑模式

命令模式下:

A:上面添加一个单元格

B:下面添加一个单元格

DD:删除一个单元格

M:Markdown

Y:代码

  • 推荐阅读:

相关文章
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
628 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
9月前
|
Python
在VScode环境下配置Python环境的方法
经过上述步骤,你的VSCode环境就已经配置好了。请尽情享受这扇你为自己开启的知识之窗。如同你在冒险世界中前行,你的探索之路只有越走越广,你获得的知识只会越来越丰富,你的能力只会越来越强。
884 37
|
8月前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
387 3
|
11月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
651 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
1190 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
11月前
|
机器学习/深度学习 数据采集 数据可视化
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
652 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
人工智能 Java Python
python安装、vscode安装、conda安装:一文搞定Python的开发环境(史上最全)
尼恩架构团队推出了一系列《LLM大模型学习圣经》PDF,旨在帮助读者深入理解并掌握大型语言模型(LLM)及其相关技术。该系列包括Python基础、Transformer架构、LangChain框架、RAG架构及LLM智能体等内容,覆盖从理论到实践的各个方面。此外,尼恩还提供了配套视频教程,计划于2025年5月前发布,助力更多人成为大模型应用架构师,冲击年薪百万目标。
|
Python
Python实用记录(十六):PyQt/PySide6联动VSCode便捷操作指南
本文提供了一份详细的PySide6与VSCode联动的操作指南,包括安装配置VSCode、安装必要的扩展、配置扩展以及编辑和运行PySide6项目。文中还提到了相关工具如uic.exe、rcc.exe和designer.exe的用途,并提供了进一步学习的资源。
2338 1
Python实用记录(十六):PyQt/PySide6联动VSCode便捷操作指南

热门文章

最新文章

推荐镜像

更多