SQL、Pandas和Spark:如何实现数据透视表?

简介: 数据透视表是一个很重要的数据统计操作,最有代表性的当属在Excel中实现(甚至说提及Excel,个人认为其最有用的当属三类:好用的数学函数、便捷的图表制作以及强大的数据透视表功能)。所以,今天本文就围绕数据透视表,介绍一下其在SQL、Pandas和Spark中的基本操作与使用,这也是沿承这一系列的文章之一。

640.png


01 数据透视表简介


数据透视表,顾名思义,就是通过对数据执行一定的"透视",完成对复杂数据的分析统计功能,常常伴随降维的效果。例如在Excel工具栏数据透视表选项卡中通过悬浮鼠标可以看到这样的描述:


640.png


在上述简介中,有两个关键词值得注意:排列汇总,其中汇总意味着要产生聚合统计,即groupby操作;排列则实际上隐含着使汇总后的结果有序。当然,如果说只实现这两个需求还不能完全表达出数据透视表与常规的groupby有何区别,所以不妨首先看个例子:


给定经典的titanic数据集,我们需要统计不同性别下的生还人数,则可以进行如下设置:


640.png


而后,即可得到如下结果:


640.png


通过上表,明显可以看出女性中约有2/3的人得以生还,而男性中则仅有不到20%的人得以生还。当然,这是数据透视表的最基本操作,大家应该也都熟悉,本文不做过多展开。


值得补充的是:实际上为了完成不同性别下的生还人数,我们完全可以使用groupby(sex, survived)这两个字段+count实现这一需求,而数据透视表则仅仅是在此基础上进一步完成行转列的pivot操作而已。理解了数据透视表的这一核心功能,对于我们下面介绍数据透视表在三大工具中的适用将非常有帮助!


02 Pandas实现数据透视表


在三大工具中,Pandas实现数据透视表可能是最为简单且又最能支持自定义操作的工具。首先,给出一个自定义的dataframe如下,仅构造name,sex,survived三个字段,示例数据如下:


640.png


基于上述数据集实现不同性别下的生还人数统计,运用pandas十分容易。这里给出Pandas中数据透视表的API介绍:


640.png


可以明显注意到该函数的4个主要参数:

  • values:对哪一列进行汇总统计,在此需求中即为name字段;
  • index:汇总后以哪一列作为行,在此需求中即为sex字段;
  • columns:汇总后以哪一列作为列,在此需求中即为survived;
  • aggfunc:执行什么聚合函数,在此需求中即为count,该参数的默认参数为mean,但只适用于数值字段。


而后,分别传入相应参数,得到数据透视表结果如下:

640.png


上述需求很简单,需要注意以下两点:

  • pandas中的pivot_table还支持其他多个参数,包括对空值的操作方式等;
  • 上述数据透视表的结果中,无论是行中的两个key("F"和"M")还是列中的两个key(0和1),都是按照字典序排序的结果,这也呼应了Excel中关于数据透视表的介绍。


03 Spark实现数据透视表


Spark作为分布式的数据分析工具,其中spark.sql组件在功能上与Pandas极为相近,在某种程度上个人一直将其视为Pandas在大数据中的实现在Spark中实现数据透视表的操作也相对容易,只是不如pandas中的自定义参数来得强大。


首先仍然给出在Spark中的构造数据:


640.png

而后,前面已分析过数据透视表的本质其实就是groupby操作+pivot,所以spark中刚好也就是运用这两个算子协同完成数据透视表的操作,最后再配合agg完成相应的聚合统计。完整的实现数据透视表及其结果如下:


640.png

当然,注意到这里仍然是保持了数据透视表结果中行key和列key的有序。


04 SQL中实现数据透视表


这一系列的文章中,一般都是将SQL排在首位进行介绍,但本文在介绍数据透视表时有意将其在SQL中的操作放在最后,这是因为在SQL中实现数据透视表是相对最为复杂的。实际上,SQL中原生并不支持数据透视表功能,只能通过衍生操作来曲线达成需求。


上述在分析数据透视表中,将其定性为groupby操作+行转列的pivot操作,那么在SQL中实现数据透视表就将需要groupby和行转列两项操作,所幸的是二者均可独立实现,简单组合即可。


仍然是在SQL中构造临时数据表,如下:


640.png


而后我们采取逐步拆解的方式尝试数据透视表的实现:


1. 利用groupby实现分组聚合统计,这一操作非常简单:


640.png


2.对上述结果执行行转列,实现数据透视表。这里,SQL中实现行转列一般要配合case when,简单的也可以直接使用if else实现。由于这里要转的列字段只有0和1两种取值,所以直接使用if函数即可:


640.png


上述SQL语句中,仅对sex字段进行groupby操作,而后在执行count(name)聚合统计时,由直接count聚合调整为两个count条件聚合,即:

  • 如果survived字段=0,则对name计数,否则不计数(此处设置为null,因为count计数时会忽略null值),得到的结果记为survived=0的个数;
  • 如果survived字段=1,则对name计数,否则不计数,此时得到的结果记为survived=1的个数。

这样,得到的结果就是最终要实现的数据透视表需求。


值得指出,这里通过if条件函数来对name列是否有实际取值+count计数实现聚合,实际上还可以通过if条件函数衍生1或0+sum求和聚合实现,例如:


640.png


当然,二者的结果是一样的。


以上就是数据透视表在SQL、Pandas和Spark中的基本操作,应该讲都还是比较方便的,仅仅是在SQL中需要稍加使用个小技巧。希望能对大家有所帮助,如果觉得有用不妨点个在看!


640.png

目录
相关文章
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
50 3
|
4月前
|
存储 分布式计算 Java
|
4月前
|
分布式计算 监控 大数据
如何处理 Spark 中的倾斜数据?
【8月更文挑战第13天】
251 4
|
4月前
|
存储 缓存 分布式计算
|
4月前
|
SQL 存储 分布式计算
|
4月前
|
分布式计算 Apache 数据安全/隐私保护
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
流计算引擎数据问题之在 Spark Structured Streaming 中水印计算和使用如何解决
51 1
|
5月前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
弹性计算 分布式计算 DataWorks
DataWorks产品使用合集之spark任务如何跨空间取表数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
42 1
|
6月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 数据可视化 数据挖掘
Pandas透视表及应用(二)
这个文本是关于使用Pandas进行数据分析的教程,主要关注会员数据的处理和业务指标的计算。
下一篇
无影云桌面