Redis - Redis分布式算法原理——Hash一致性理解 & Hash倾斜性解决方案

简介: Redis - Redis分布式算法原理——Hash一致性理解 & Hash倾斜性解决方案

最近有小伙伴跑过来问什么是Hash一致性算法,说面试的时候被问到了,因为不了解,所以就没有回答上,问我有没有相应的学习资料推荐,当时上班,没时间回复,晚上回去了就忘了这件事,今天突然看到这个,加班为大家整理一下什么是Hash一致性算法,希望对大家有帮助!文末送书,长按抽奖助手小程序即可参与,祝君好运!

经常阅读我文章的小伙伴应该都很熟悉我写文章的套路,上来就是先要问一句为什么?也就是为什么要有Hash一致性算法?就像以前介绍为什么要有Spring一样,首先会以历史的角度或者项目发展的角度来分析,今天的分享还是一样的套路,先从历史的角度来一步步分析,探讨一下到底什么是Hash一致性算法!

一、Redis集群的使用

我们在使用Redis的时候,为了保证Redis的高可用,提高Redis的读写性能,最简单的方式我们会做主从复制,组成Master-Master或者Master-Slave的形式,或者搭建Redis集群,进行数据的读写分离,类似于数据库的主从复制和读写分离。如下所示:

同样类似于数据库,当单表数据大于500W的时候需要对其进行分库分表,当数据量很大的时候(标准可能不一样,要看Redis服务器容量)我们同样可以对Redis进行类似的操作,就是分库分表。

假设,我们有一个社交网站,需要使用Redis存储图片资源,存储的格式为键值对,key值为图片名称,value为该图片所在文件服务器的路径,我们需要根据文件名查找该文件所在文件服务器上的路径,数据量大概有2000W左右,按照我们约定的规则进行分库,规则就是随机分配,我们可以部署8台缓存服务器,每台服务器大概含有500W条数据,并且进行主从复制,示意图如下:

由于规则是随机的,所有我们的一条数据都有可能存储在任何一组Redis中,例如上图我们用户查找一张名称为”a.png”的图片,由于规则是随机的,我们不确定具体是在哪一个Redis服务器上的,因此我们需要进行1、2、3、4,4次查询才能够查询到(也就是遍历了所有的Redis服务器),这显然不是我们想要的结果,有了解过的小伙伴可能会想到,随机的规则不行,可以使用类似于数据库中的分库分表规则:按照Hash值、取模、按照类别、按照某一个字段值等等常见的规则就可以出来了!好,按照我们的主题,我们就使用Hash的方式。

二、为Redis集群使用Hash

可想而知,如果我们使用Hash的方式,每一张图片在进行分库的时候都可以定位到特定的服务器,示意图如下:

上图中,假设我们查找的是”a.png”,由于有4台服务器(排除从库),因此公式为 hash(a.png) % 4 = 2,可知定位到了第2号服务器,这样的话就不会遍历所有的服务器,大大提升了性能!

三、使用Hash的问题

上述的方式虽然提升了性能,我们不再需要对整个Redis服务器进行遍历!但是,使用上述Hash算法进行缓存时,会出现一些缺陷,主要体现在服务器数量变动的时候,所有缓存的位置都要发生改变!

试想一下,如果4台缓存服务器已经不能满足我们的缓存需求,那么我们应该怎么做呢?很简单,多增加几台缓存服务器不就行了!假设:我们增加了一台缓存服务器,那么缓存服务器的数量就由4台变成了5台。那么原本hash(a.png) % 4 = 2 的公式就变成了hash(a.png) % 5 = ? , 可想而知这个结果肯定不是2的,这种情况带来的结果就是当服务器数量变动时,所有缓存的位置都要发生改变!换句话说,当服务器数量发生改变时,所有缓存在一定时间内是失效的,当应用无法从缓存中获取数据时,则会向后端数据库请求数据(还记得上一篇的《缓存雪崩》吗?)!

同样的,假设4台缓存中突然有一台缓存服务器出现了故障,无法进行缓存,那么我们则需要将故障机器移除,但是如果移除了一台缓存服务器,那么缓存服务器数量从4台变为3台,也是会出现上述的问题!

所以,我们应该想办法不让这种情况发生,但是由于上述Hash算法本身的缘故,使用取模法进行缓存时,这种情况是无法避免的,为了解决这些问题,Hash一致性算法(一致性Hash算法)诞生了!

四、一致性Hash算法的神秘面纱

一致性Hash算法也是使用取模的方法,只是,刚才描述的取模法是对服务器的数量进行取模,而一致性Hash算法是对2^32取模,什么意思呢?简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下:

整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环

下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用IP地址哈希后在环空间的位置如下:

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器!

例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:

根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

五、一致性Hash算法的容错性和可扩展性

现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响,如下所示:

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:

此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X !一般的,在一致性Hash算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性Hash算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

六、Hash环的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器,其环分布如下:

此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性Hash算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器IP或主机名的后面增加编号来实现。

例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

七、总结

上文中,我们一步步分析了什么是一致性Hash算法,主要是考虑到分布式系统每个节点都有可能失效,并且新的节点很可能动态的增加进来的情况,如何保证当系统的节点数目发生变化的时候,我们的系统仍然能够对外提供良好的服务,这是值得考虑的!

目录
相关文章
|
3月前
|
缓存 NoSQL 关系型数据库
MySQL 与 Redis 如何保证双写一致性?
我是小假 期待与你的下一次相遇 ~
432 7
|
7月前
|
消息中间件 存储 缓存
zk基础—1.一致性原理和算法
本文详细介绍了分布式系统的特点、理论及一致性算法。首先分析了分布式系统的五大特点:分布性、对等性、并发性、缺乏全局时钟和故障随时发生。接着探讨了分布式系统理论,包括CAP理论(一致性、可用性、分区容错性)和BASE理论(基本可用、软状态、最终一致性)。文中还深入讲解了两阶段提交(2PC)与三阶段提交(3PC)协议,以及Paxos算法的推导过程和核心思想,强调了其在ZooKeeper中的应用。最后简述了ZAB算法,指出其通过改编的两阶段提交协议确保节点间数据一致性,并在Leader故障时快速恢复服务。这些内容为理解分布式系统的设计与实现提供了全面的基础。
|
4月前
|
机器学习/深度学习 传感器 算法
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
基于不变扩展卡尔曼滤波器RI-EKF的同时定位与地图构建SLAM算法的收敛性和一致性特性研究(Matlab代码实现)
138 2
|
6月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
211 1
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
存储 NoSQL Java
Redis如何处理Hash冲突?
在 Redis 中,哈希表是一种常见的数据结构,通常用于存储对象的属性,对于哈希表,最常遇到的是哈希冲突,那么,当 Redis遇到Hash冲突会如何处理?这篇文章,我们将详细介绍Redis如何处理哈希冲突,并探讨其性能和实现细节。
365 1
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
10月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
消息中间件 监控 NoSQL
Redis脑裂问题详解及解决方案
Redis脑裂问题是分布式系统中常见的复杂问题,合理配置Redis Sentinel、使用保护模式、采用分布式锁机制以及优化网络和客户端连接策略等措施,可以有效预防和解决脑裂问题。通过深入理解Redis脑裂问题的成因和影响,采取相应的解决方案,能够提高系统的可用性和数据一致性,保障Redis集群的稳定运行。希望本文能帮助你更好地理解和应对Redis脑裂问题。
1149 2
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
266 5