最近,我用pandas处理了一把大数据……

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: pandas堪称瑞士军刀般的存在,几乎可以胜任数据分析的全过程。如果说有什么缺点的话,那么就是其不支持分布式,所以对于小数据量完全不压力,但面对大数据时却当真有些乏力。近日,自己便用pandas处理了一些大数据场景,现分享几个心得技巧。

640.jpg


首先简单介绍下场景:数据是每个月一份的csv文件,字段数目10个左右,单个文件记录数约6-8亿之间,单个文件体积50G+的样子。表中是一条条的带有时间字段的数据,需求是对数据进行汇总统计和简单分析处理(一般而言,数据量巨大的需求处理逻辑都不会特别复杂)。所以,虽然标题称之为大数据,但实际上也没有特别夸张。


01 大数据读取


pandas自带了常用文件的读取方法,例如csv文件对应的读取函数即为pd.read_csv,这也是日常应用中经常接触的方法。然而对于处理这个50G的csv文件而言,直接使用是肯定不行的,当前个人电脑内存普遍在8G-16G内存之间,笔者的是一台8G内存的工作机,除去系统占用基本留给用于加载数据的空间不到6G,另一方面通过多次试验结果:对于一个2G的文件,读取过程中内存占用会达到4G左右,大概是实际文件体积的两倍,加载完毕之后会有有所回落。所以,就8G内存的工作机而言,读取一个2.5G的大文件本身已经存在一定风险。


为此,pandas开发者专为此设计了两组很有用的参数,分别用于控制行和列信息:

  • skiprows + nrows,前者用于控制跳过多少行记录,后者用于控制读取行数,skiprows默认值为0,nrows缺省读取所有行数,这也是最常用的方式。但合理的设置两个参数,可以实现循环读取特定范围的记录
  • usecols:顾名思义,仅加载文件中特定的列字段,非常适用于列数很多而实际仅需其中部分字段的情况,要求输入的列名实际存在于表中


640.png

pd.read_csv()中相关参数说明


具体到实际需求,个人实现时首先通过循环控制skiprows参数来遍历整个大文件,每次读取后对文件再按天分割,同时仅选取其中需要的3个列字段作为加载数据,如此一来便实现了大表到小表的切分。虽然受限于内存而执行效率有限,但也终究算是一种解决方案。


02 内存管理


仍然是循环读取大文件分表的问题,对于每次循环,读取一个大文件到内存,执行完相应处理流程后,显式执行以下两行代码即可,实测效果很有用。


del xx
gc.collect()


03 时间字段的处理


给定的大文件中,时间字段是一个包含年月日时分秒的字符串列,虽然在read_csv方法中自带了时间解析参数,但对于频繁多次应用时间列进行处理时,其实还有更好的方法:转为时间戳。


例如,在个人的实际处理中主要用到的操作包括:按时间排序、按固定周期进行重采样、分组聚合统计等,这几个操作中无一例外都涉及到时间列的比较,如果是字符串格式或者时间格式的时间列,那么在每次比较中实际要执行多次比较,而如果转换为时间戳后,则参与比较的实际上是一个整数值,毫无疑问这是效率最高的比较类型。进一步地,对于重采样需求而言,还可以通过整除特定的时间间隔,然后执行groupby操作即可。例如,执行每5分钟重采样,则可将所有时间戳(秒级)整除300,然后以相应结果作为groupby字段即可。


这里,补充两种将时间格式转换为时间戳的具体实现方法:


# 假设df['dt']列是时间格式,需将其转换为时间戳格式
# 方法一:
df['dt'] = (pd.to_datetime(df['dt'])-pd.to_datetime('1970-01-01T08:00:00')).total_seconds()
# 方法二:
df['dt'] = (pd.to_datetime(df['dt']).values - np.datetime64('1970-01-01T08:00:00Z')) // np.timedelta64(1, 's')


640.png

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
8月前
|
存储 大数据 数据挖掘
Pandas高级数据处理:大数据集处理
Pandas 是强大的 Python 数据分析库,但在处理大规模数据集时可能遇到性能瓶颈和内存不足问题。本文介绍常见问题及解决方案,如分块读取、选择性读取列、数据类型优化、避免不必要的副本创建等技巧,并通过代码示例详细解释。同时,针对 `MemoryError`、`SettingWithCopyWarning` 和 `DtypeWarning` 等常见报错提供解决方法,帮助读者更高效地处理大数据集。
306 16
|
9月前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
177 6
|
10月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
分布式计算 数据可视化 大数据
Vaex :突破pandas,快速分析100GB大数据集
Vaex :突破pandas,快速分析100GB大数据集
202 3
|
存储 分布式计算 大数据
Pandas能处理大数据吗?
【7月更文挑战第9天】Pandas能处理大数据吗?
208 8
|
机器学习/深度学习 数据采集 大数据
驾驭大数据洪流:Pandas与NumPy在高效数据处理与机器学习中的核心作用
【7月更文挑战第13天】在大数据时代,Pandas与NumPy是Python数据分析的核心,用于处理复杂数据集。在一个电商销售数据案例中,首先使用Pandas的`read_csv`加载CSV数据,通过`head`和`describe`进行初步探索。接着,数据清洗涉及填充缺失值和删除异常数据。然后,利用`groupby`和`aggregate`分析销售趋势,并用Matplotlib可视化结果。在机器学习预处理阶段,借助NumPy进行数组操作,如特征缩放。Pandas的数据操作便捷性与NumPy的数值计算效率,共同助力高效的数据分析和建模。
263 3
|
分布式计算 数据挖掘 数据处理
基于 MaxCompute MaxFrame 实现分布式 Pandas 处理
阿里云分布式计算框架 MaxCompute MaxFrame 兼容 Pandas 接口且自动进行分布式处理,在保证强大数据处理能力的同时,可以大幅度提高数据处理规模及计算效率。
714 1
|
数据采集 数据可视化 算法
Python在大数据分析中的力量:Pandas、NumPy与SciPy
【4月更文挑战第8天】Pandas、NumPy和SciPy是Python数据分析的核心,构成其在大数据领域的重要地位。Pandas提供高效的数据操作,包括DataFrame和Series结构,以及数据清洗和预处理工具。NumPy专注于数组计算,提供高性能的ndarray和数学函数。SciPy则包含专业算法,适用于科学与工程计算。这三者协同工作,覆盖数据分析的全过程,形成强大的Python生态系统。随着社区的不断创新和新库的涌现,如Dask和CuDF,Python在大数据分析领域的潜力将持续增长。
635 0
|
12月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
254 1
|
10月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
303 0

热门文章

最新文章