MapReduce架构简介

简介: 今天来讲MapReduce架构简介

前言:


MapReduce是用于数据处理的一种编程模型,简单但足够强大,专门为并行处理大数据而设计。

MapReduce的处理过程分为两个步骤:map和reduce。每个阶段的输入输出都是key-value的形式,key和value的类型可以自行指定。map阶段对切分好的数据进行并行处理,处理结果传输给reduce,由reduce函数完成最后的汇总。

到了2.0之后,MapReduce可以理解为是一个jar包或一个程序,这个程序要运行在Yarn上面,上面有两个进程,ResourceManager和NodeManager,ResourceManager里面两个模块是什么,Application Manager: 应用程序管理器 和  Scheduler:调度器,NodeManager相当于执行一个容器,这个容器里面有 CPU+Memory,这个容器运行一个封装的任务,MapTask(映射任务)或者跑ReduceTask(归约任务)

下面简单介绍下MapReduce2架构设计或者称为MapReduce提交到Yarn的工作流程:


image.png

MapReduce架构.png


  • 1:用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。
  • 2:ResourceManager为该应用程序分配第一个Container,并与对应的Node-Manager通信,要求它在这个Container中启动应用
    程序的ApplicationMaster。
  • 3:ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后
    它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。
  • 4:ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。
  • 5:一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务。
  • 6:NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通
    过运行该脚本启动任务。
  • 7:各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行
    状态,从而可以在任务失败时重新启动任务。在应用程序运行过程中,用户可随时通过RPC向ApplicationMaster查询应用程序
    的当前运行状态。
  • 8:应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。


目录
相关文章
|
7月前
|
存储 并行计算 安全
我们自己的芯片指令集架构——龙芯架构简介
我们自己的芯片指令集架构——龙芯架构简介
812 6
|
7月前
|
Web App开发 JavaScript 前端开发
【热门话题】WebKit架构简介
WebKit,开源浏览器引擎,支撑Safari、Chrome等,以其高效、稳定和跨平台特性著称。文章介绍了WebKit的起源、模块化设计,重点讲解了WebCore的DOM、CSSOM、Render Tree、布局、绘图与合成,以及JavaScriptCore的解析、编译和垃圾回收。WebKit2的多进程架构提升了稳定性和安全性。理解WebKit有助于优化网页性能和参与社区贡献。
67 0
|
存储 人工智能 Serverless
微服务和 Serverless 架构-函数计算 FC 简介及应用场景
微服务和 Serverless 架构-函数计算 FC 简介及应用场景
微服务和 Serverless 架构-函数计算 FC 简介及应用场景
|
监控 负载均衡 测试技术
服务网格简介:探索现代微服务架构中的服务网格概念和价值
服务网格简介:探索现代微服务架构中的服务网格概念和价值
310 0
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
78 2
|
2月前
|
Kubernetes 调度 算法框架/工具
NVIDIA Triton系列02-功能与架构简介
本文介绍了NVIDIA Triton推理服务器的功能与架构,强调其不仅适用于大型服务类应用,还能广泛应用于各类推理场景。Triton支持多种模型格式、查询类型和部署方式,具备高效的模型管理和优化能力,确保高性能和系统稳定性。文章详细解析了Triton的主从架构,包括模型仓库、客户端应用、通信协议和推理服务器的核心功能模块。
91 1
NVIDIA Triton系列02-功能与架构简介
|
2月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
59 2
|
2月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
52 0
|
6月前
|
存储 消息中间件 数据库
分布式系统详解--架构简介(微服务)
分布式系统详解--架构简介(微服务)
93 0
|
7月前
|
分布式计算 API 数据处理
Flink【基础知识 01】(简介+核心架构+分层API+集群架构+应用场景+特点优势)(一篇即可大概了解flink)
【2月更文挑战第15天】Flink【基础知识 01】(简介+核心架构+分层API+集群架构+应用场景+特点优势)(一篇即可大概了解flink)
173 1
下一篇
DataWorks