你必须知道的Java泛型(下)

简介: 前言文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…种一棵树最好的时间是十年前,其次是现在

泛型接口


泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

首先定义一个泛型接口

package com.atguigu.ct.producer.Test;
/**
 * 六脉神剑
 * @param <T>
 */
public interface Generator<T> {
    T eat();
}
复制代码


当实现泛型接口的类,未传入泛型实参时: 由于没有传入具体的参数,所以这个实现接口的类,也必然是泛型类,不然编译不过

package com.atguigu.ct.producer.Test;
/**
 * 六脉神剑
 * @param <T>
 */
public class FruitGenerator<T> implements Generator<T> {
    @Override
    public T eat() {
        return null;
    }
}
复制代码


当实现泛型接口的类,传入泛型实参时:这个时候就不能是泛型类了,因为泛型接口已经明确类型了

package com.atguigu.ct.producer.Test;
/**
 * 六脉神剑
 * @param 
 */
public class FruitGenerator implements Generator<String> {
    @Override
    public String eat() {
        return null;
    }
}
复制代码


类型通配符


我们知道Ingeter是Number的一个子类,同时在特性章节中我们也验证过Generic与Generic实际上是相同的一种基本类型。那么问题来了,在使用Generic作为形参的方法中,能否使用Generic的实例传入呢?在逻辑上类似于Generic和Generic是否可以看成具有父子关系的泛型类型呢?

为了弄清楚这个问题,我们使用Generic这个泛型类继续看下面的例子:

public void showKeyValue1(Generic<Number> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
}
复制代码


Generic<Integer> gInteger = new Generic<Integer>(123);
Generic<Number> gNumber = new Generic<Number>(456);
showKeyValue(gNumber);
// showKeyValue这个方法编译器会为我们报错:Generic<java.lang.Integer> 
// cannot be applied to Generic<java.lang.Number>
// showKeyValue(gInteger);
复制代码


通过提示信息我们可以看到Generic不能被看作为`Generic的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic类型的类,这显然与java中的多台理念相违背。因此我们需要一个在逻辑上可以表示同时是Generic和Generic父类的引用类型。由此类型通配符应运而生。

我们可以将上面的方法改一下:


public void showKeyValue1(Generic<?> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
}
复制代码


类型通配符一般是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参 ! 此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer一样都是一种实际的类型,可以把?看成所有类型的父类。是一种真实的类型。

可以解决当具体类型不确定的时候,这个通配符就是 ?  ;当操作类型时,不需要使用类型的具体功能时,只使用Object类中的功能。那么可以用 ? 通配符来表未知类型。


泛型方法


在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

尤其是我们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中非常容易将泛型方法理解错了。

泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型 。


/**
 * 泛型方法的基本介绍
 * @param tClass 传入的泛型实参
 * @return T 返回值为T类型
 * 说明:
 *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
 *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
 *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
 *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
 */
public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
  IllegalAccessException{
        T instance = tClass.newInstance();
        return instance;
}
Object obj = genericMethod(Class.forName("com.test.test"));
复制代码


光看上面的例子有的同学可能依然会非常迷糊,我们再通过一个例子,把我泛型方法再总结一下。

public class GenericTest {
   //这个类是个泛型类,在上面已经介绍过
   public class Generic<T>{     
        private T key;
        public Generic(T key) {
            this.key = key;
        }
        //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
        //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
        //所以在这个方法中才可以继续使用 T 这个泛型。
        public T getKey(){
            return key;
        }
        /**
         * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
         * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
        public E setKey(E key){
             this.key = keu
        }
        */
    }
    /** 
     * 这才是一个真正的泛型方法。
     * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
     * 这个T可以出现在这个泛型方法的任意位置.
     * 泛型的数量也可以为任意多个 
     *    如:public <T,K> K showKeyName(Generic<T> container){
     *        ...
     *        }
     */
    public <T> T showKeyName(Generic<T> container){
        System.out.println("container key :" + container.getKey());
        //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
        T test = container.getKey();
        return test;
    }
    //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
    public void showKeyValue1(Generic<Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
    //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
    //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
    public void showKeyValue2(Generic<?> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }
     /**
     * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
     * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
     * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
    public <T> T showKeyName(Generic<E> container){
        ...
    }  
    */
    /**
     * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
     * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
     * 所以这也不是一个正确的泛型方法声明。
    public void showkey(T genericObj){
    }
    */
    public static void main(String[] args) {
    }
}
复制代码


再看一个泛型方法和可变参数的例子:

public <T> void printMsg( T... args){
    for(T t : args){
        Log.d("泛型测试","t is " + t);
    }
}
复制代码


printMsg("111",222,"aaaa","2323.4",55.55);


泛型上下边界


在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

public void showKeyValue1(Generic<? extends Number> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
复制代码


Generic<String> generic1 = new Generic<String>("11111");
Generic<Integer> generic2 = new Generic<Integer>(2222);
Generic<Float> generic3 = new Generic<Float>(2.4f);
Generic<Double> generic4 = new Generic<Double>(2.56);
//这一行代码编译器会提示错误,因为String类型并不是Number类型的子类
//showKeyValue1(generic1);
showKeyValue1(generic2);
showKeyValue1(generic3);
showKeyValue1(generic4);
复制代码


再看有个下边界

<? super Type>
       public TreeSet(Comparator<? super E> comparator) {
        this(new TreeMap<>(comparator));
    }
复制代码


值得注意的是:无论是设定通配符上限还是下限,都是不能操作与对象有关的方法,只要涉及到了通配符,它的类型都是不确定的!


泛型的应用


最简单 我们的Dao 我的service impl 肯定是用到了的 这样可以封装一些通用的方法了


结尾


泛型就讲那么多了,希望对大家有所帮助,至少对泛型的认识深刻了点,但是要熟练运用,我只能说冰冻三尺,非一日之寒,这些才是真正的手上功夫,各位大佬一起加油。

相关文章
|
9天前
|
Java 编译器 容器
Java 泛型
Java 泛型
20 10
|
12天前
|
安全 Java 编译器
Android面试题之Java 泛型和Kotlin泛型
**Java泛型是JDK5引入的特性,用于编译时类型检查和安全。泛型擦除会在运行时移除类型参数,用Object或边界类型替换。这导致几个限制:不能直接创建泛型实例,不能使用instanceof,泛型数组与协变冲突,以及在静态上下文中的限制。通配符如<?>用于增强灵活性,<? extends T>只读,<? super T>只写。面试题涉及泛型原理和擦除机制。
18 3
Android面试题之Java 泛型和Kotlin泛型
|
5天前
|
存储 安全 Java
Java泛型(1)
Java泛型(1)
23 13
|
2天前
|
存储 安全 Java
JAVA 泛型新篇章:编译时类型安全的新境界!
【6月更文挑战第28天】Java 泛型增强了编译时类型安全,避免运行时类型转换异常。例如,未使用泛型的代码可能因隐含的类型转换抛出`ClassCastException`。泛型允许指定容器如`List&lt;String&gt;`的元素类型,确保编译期检查。此外,泛型类如`Stack&lt;T&gt;`能适应多种类型,提高代码重用。使用泛型方法如`&lt;T&gt; void processElements(List&lt;T&gt;)`可增强方法的通用性。泛型是Java中提升可靠性和灵活性的关键工具。
|
9天前
|
安全 Java 编译器
在Java中,什么是类型擦除机制,如何有效运用泛型的类型擦除机制?
Java的类型擦除机制在编译时移除了泛型的类型参数信息,生成的字节码不包含泛型,以确保向后兼容。这导致运行时无法直接获取泛型类型,但编译器仍做类型检查。为了有效利用类型擦除,应避免运行时类型检查,使用通配符和界限增加代码灵活性,通过超类型令牌获取泛型信息,以及利用泛型方法来保证安全性。理解这些策略能帮助开发者编写更安全的泛型代码。
29 8
|
11天前
|
安全 Java 开发者
Java泛型详解
Java泛型详解
16 2
|
2天前
|
存储 安全 Java
JAVA泛型:类型安全,从编译时开始!
【6月更文挑战第28天】Java泛型是JDK 5引入的特性,用于在编译时实现类型安全的集合。它通过类型参数增强代码灵活性和重用性,减少错误。示例展示了泛型列表`List&lt;Integer&gt;`和`List&lt;String&gt;`如何确保元素类型正确,防止编译时类型不符。泛型提升了代码的类型安全、可读性和维护性。
|
2天前
|
存储 安全 Java
探索JAVA泛型:让代码在编译时就拥有金钟罩铁布衫!
【6月更文挑战第28天】Java泛型,自1.5版起,是代码安全性的守护者。它允许在类、接口和方法中使用类型参数,减少重复代码,提升可读性。泛型在编译时执行类型检查,防止运行时类型错误,如同给代码穿上“金钟罩铁布衫”。以Box类为例,泛型避免了显式转换,确保类型安全,让编程更加高效和无忧。
|
2天前
|
安全 Java 编译器
JAVA泛型,编译时类型安全的“秘密武器”
【6月更文挑战第28天】Java泛型是JDK 5引入的特性,用于在编译时增强类型安全和代码复用。它允许类、接口和方法使用类型参数,确保运行时类型匹配,减少了类型转换错误。例如,泛型方法`&lt;T&gt; void printArray(T[] array)`能接受任何类型数组,编译器会检查类型一致性。此外,泛型提升了代码的可读性、可维护性和与容器类的配合效率,优化整体软件质量。
|
2天前
|
存储 安全 Java
JAVA泛型:为何它是编程界的“安全卫士”?
【6月更文挑战第28天】Java泛型增强了代码复用、可读性和类型安全。它们引入类型参数,允许在编译时检查类型,防止运行时异常。例如,泛型ArrayList防止了不兼容类型的添加,而泛型方法和类减少了重复代码。示例展示了泛型类`Box&lt;T&gt;`、泛型方法`printArray&lt;T&gt;`和泛型接口`Printer&lt;T&gt;`的使用,强调了泛型在确保类型安全和灵活性方面的价值。