Python pyecharts Bar图

简介: 本篇博客主要是针对pyecharts的bar图的一些代码的实战与解释,都是一些对官网的bar图的理解。》》

一、简介



关于具体详情,请咨询:pyecharts官网


pyecharts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而Python是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts诞生了。Echarts是用JS来写的,而我们使用pyecharts则可以使用Python来调用里面的API。


优点:

  1. 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  2. 囊括了 30+ 种常见图表,应有尽有
  3. 支持主流 Notebook环境,Jupyter Notebook 和 JupyterLab
  4. 可轻松集成至 Flask,Django 等主流 Web 框架
  5. 高度灵活的配置项,可轻松搭配出精美的图表
  6. 详细的文档和示例,帮助开发者更快的上手项目
  7. 多达 400+地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持。


二、整理数据



安装:

! pip install pyecharts


1、配置主题


更多相关主题》》直接在CSDN上面搜索即可。

Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) # 第一种
Bar({"theme": ThemeType.MACARONS}) # 第二种

51900faa72ba4a3ea34fe2e99f3368e4.png5c00bda45a294500b18acfb9cc0299bd.png


2、柱状图 Bar - Bar_base_dict_config



import os
from matplotlib import pyplot as plt 
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次')
    )
)
# c.render("cnbo1.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

588f8367e9f642dc95843990631ef77e.gif


3、样例数据 Faker.choose()



使用这段代码会随机调用系统的样例参数:

.add_xaxis(Faker.choose())

4a07d3ba3a7646e991c4d95c09b138af.png


from pyecharts.faker import Faker
list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
c = (
    Bar({"theme": ThemeType.MACARONS})  ### 配置好看的图表主题!!!
    .add_xaxis(Faker.choose())    ### 这句话表示使用随机的后台样例数据
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts={"text":"样例数据","subtext":"使用Faker.choose()"}
    )
)
c.render("cnbo1.html") # 生成html图片
# os.system("cnbo1.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片


4、滚动条 Bar - Bar_datazoom_slider



datazoom_opts=opts.DataZoomOpts()

表示可以滑动的滚动条:

list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(), ### 可以使最下面多出滚动条
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

image.gif


5、鼠标移动效果 Bar - Bar_datazoom_inside



根据鼠标来放大与缩小的效果:

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(inside)"),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),
    )
    .render("bar_datazoom_inside.html")
)

bc65fa7f66fb4902858cadb83f9175ba.gif


6、显示最值 Bar - Bar_markpoint_type



list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        ),
        markpoint_opts=opts.MarkPointOpts( #########
            data=[
            opts.MarkPointItem(type_="max", name="最大值"),
            opts.MarkPointItem(type_="min", name="最小值"),
            opts.MarkPointItem(type_="average", name="平均值"),
        ]
           ),#########
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(orient='vertical'), 
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

29ffa426fd8845e09507fd2ef19fd9a8.png3498d73a3aad489eb8c932ebb892c23d.png


7、改变滚动条在侧面 Bar - Bar_datazoom_slider_vertical



list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(orient='vertical'), 
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

image.gif


8、多个Y轴



colors=['#5793f3','#d14a61','#675bba']
legend_list=['票房','人次','价格','评价']
list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
list4=cnbodfsort['BO'].tolist()
list5=cnbodfsort['points'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK,width="1600px",height="600px"))
    .add_xaxis(list1)
    .add_yaxis("评分", list5,yaxis_index=0,category_gap="50%",color=colors[2])
    .add_yaxis("票价", list2,yaxis_index=0,category_gap="50%",color=colors[0])
    .add_yaxis("人次", list3,yaxis_index=0,category_gap="50%",color=colors[1])
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="top",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        ),
        markpoint_opts=opts.MarkPointOpts(
            data=[
            opts.MarkPointItem(type_="max", name="最大值"),
            opts.MarkPointItem(type_="min", name="最小值"),
            opts.MarkPointItem(type_="average", name="平均值"),
               ]
           ),
    )    
    .extend_axis(
    yaxis=opts.AxisOpts(
        name="票房",
        type_="value",
        min_=1000,
        max_=150000,
        interval=10000,
        position="right",
        axislabel_opts=opts.LabelOpts(formatter="{value} 万")
    )
    )
    .extend_axis(
    yaxis=opts.AxisOpts(
        name="评价",
        type_="value",
        min_=0,
        max_=11,
        interval=1,
        position="left",
        axislabel_opts=opts.LabelOpts(formatter="{value} 点"),
        axisline_opts=opts.AxisLineOpts(
            linestyle_opts=opts.LineStyleOpts(color=colors[2])
        ),
        splitline_opts=opts.SplitLineOpts(
            is_show=True,linestyle_opts=opts.LineStyleOpts(opacity=1)
        ),
        )
    )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                type_="value",
                name="票价",
                min_=10,
                max_=70,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color=colors[0])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} 元"),
        ),
        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        datazoom_opts=opts.DataZoomOpts(orient='vertical'),
        toolbox_opts=opts.ToolboxOpts(pos_left='120%'),
        legend_opts=opts.LegendOpts(is_show=False),
    )
 )
line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="票房",
        yaxis_index=1,
        y_axis=list4,
        label_opts=opts.LabelOpts(is_show=False),
    )
)
c.render_notebook() # 直接在代码区域展示图片

双Y轴:f22a5e0ed6434802b8deeb105ee12638.gif


9、直方图 Bar - Bar_histogram



# Bar - Bar_histogram
from pyecharts.options.global_options import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (
    Bar({"theme":ThemeType.DARK})
    .add_xaxis(cnboregiongb.index.tolist())
    .add_yaxis("数量", cnboregiongb.values.tolist(), category_gap=0, color=Faker.rand_color())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图"))
)
c.render_notebook()

1a06b207e8aa4227839d4fef5db568e1.png


相关文章
|
3月前
|
Python
pyecharts:一款python画图神器
pyecharts:一款python画图神器
48 0
|
3月前
|
数据可视化 搜索推荐 JavaScript
pyecharts模块的几个经典案例(python经典编程案例)
文章提供了多个使用pyecharts模块创建数据可视化的Python编程案例,展示如何生成各种类型的图表并进行定制化设置。
117 0
|
5月前
|
存储 程序员 Python
小白也能用的代码!1行Python,把PPT转成1张长图
大家好,我是程序员晚枫。今天介绍`python-office`库的新功能:仅用1行Python代码将PPT转为单张长图。
87 11
 小白也能用的代码!1行Python,把PPT转成1张长图
|
4月前
|
数据采集 数据可视化 数据挖掘
【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】
【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】
|
4月前
|
数据可视化 算法 前端开发
基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则
本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。
145 2
|
4月前
|
前端开发 数据可视化 JavaScript
【揭秘神器】如何用Pyecharts轻松召唤出Echarts?只需几行Python代码,让你的数据瞬间生动起来!
【8月更文挑战第21天】Pyecharts是一款基于Python的图表生成库,利用Echarts强大的JavaScript可视化能力,让开发者无需编写前端代码即可在Python环境中创建美观图表。本文通过实例演示如何安装Pyecharts并生成一个展示城市气温分布的柱状图,包括基本图表生成及自定义样式设置,如颜色调整、图例显示等,最终将图表嵌入HTML文件展示,适合各水平开发者快速掌握数据可视化技能。
62 0
|
5月前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
【7月更文挑战第12天】Python进阶必学:DFS和BFS图遍历算法。理解图概念,用邻接表建无向图,实现DFS和BFS。DFS适用于查找路径,BFS解决最短路径。通过实例代码加深理解,提升编程技能。
47 4
|
5月前
|
算法 Python
逆袭之路!用 Python 玩转图的 DFS 与 BFS,让数据结构难题无处遁形
【7月更文挑战第12天】图的遍历利器:DFS 和 BFS。Python 中,图可表示为邻接表或矩阵。DFS 沿路径深入,回溯时遍历所有可达顶点,适合找路径和环。BFS 层次遍历,先近后远,解决最短路径问题。两者在迷宫、网络路由等场景各显神通。通过练习,掌握这些算法,图处理将游刃有余。
67 3
|
5月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
51 1
|
4月前
|
数据可视化 前端开发 JavaScript
基于python flask +pyecharts实现的气象数据可视化分析大屏
本文介绍了一个基于Python Flask和Pyecharts技术实现的气象数据可视化分析大屏,该系统通过图表展示气象数据,提供实时监测和数据分析功能,帮助用户和决策者进行有效应对措施的制定。
120 0